動(dòng)態(tài)作業(yè)車(chē)間調(diào)度知識(shí)推理及知識(shí)系統(tǒng)設(shè)計(jì)
本文選題:動(dòng)態(tài)環(huán)境 + 調(diào)度規(guī)則 ; 參考:《合肥工業(yè)大學(xué)》2017年碩士論文
【摘要】:在現(xiàn)代制造模式下,靜態(tài)的調(diào)度方案已經(jīng)無(wú)法適應(yīng)于多變的作業(yè)車(chē)間生產(chǎn)環(huán)境,基于知識(shí)推理的調(diào)度方法是解決該類(lèi)問(wèn)題的有效方式之一。當(dāng)前調(diào)度知識(shí)系統(tǒng)多建立領(lǐng)域內(nèi)專(zhuān)家經(jīng)驗(yàn)基礎(chǔ)之上,多存在主觀(guān)性強(qiáng)、決策依賴(lài)部分屬性、多源知識(shí)沖突和知識(shí)滯后等問(wèn)題。本文針對(duì)動(dòng)態(tài)車(chē)間環(huán)境下的調(diào)度知識(shí)推理研究現(xiàn)狀,重點(diǎn)研究調(diào)度規(guī)則的動(dòng)態(tài)選擇的問(wèn)題,利用企業(yè)制造系統(tǒng)中的生產(chǎn)調(diào)度數(shù)據(jù),運(yùn)用遺傳算法和BP人工神經(jīng)網(wǎng)絡(luò)算法構(gòu)建動(dòng)態(tài)調(diào)度知識(shí)網(wǎng)絡(luò),設(shè)計(jì)基于動(dòng)態(tài)知識(shí)網(wǎng)絡(luò)的調(diào)度知識(shí)系統(tǒng)。首先,建立靜態(tài)作業(yè)車(chē)間數(shù)學(xué)模型;針對(duì)一般作業(yè)車(chē)間靜態(tài)調(diào)度問(wèn)題,通過(guò)編碼解碼、交叉、變異等遺傳算法操作,獲得問(wèn)題最優(yōu)解;歸納一般靜態(tài)車(chē)間調(diào)度問(wèn)題求解的遺傳算法流程。其次,分析常見(jiàn)的作業(yè)調(diào)度規(guī)則和幾種復(fù)合規(guī)則調(diào)度方式,確定本文研究方向?yàn)樽赃m應(yīng)調(diào)度;利用遺傳算法求解改進(jìn)的4×3調(diào)度問(wèn)題的最優(yōu)解,基于BP人工神經(jīng)網(wǎng)絡(luò)算法建模,定義網(wǎng)絡(luò)輸入?yún)?shù)和輸出參數(shù),從遺傳算法最優(yōu)解中抽取沖突時(shí)間決策點(diǎn),計(jì)算人工神經(jīng)網(wǎng)絡(luò)輸入和輸出,獲得訓(xùn)練樣本;訓(xùn)練樣本數(shù)據(jù)獲得非線(xiàn)性網(wǎng)絡(luò)關(guān)系,指導(dǎo)不確定車(chē)間條件下調(diào)度規(guī)則的選擇。最后,分析調(diào)度知識(shí)系統(tǒng)實(shí)現(xiàn)的關(guān)鍵策略,進(jìn)行調(diào)度知識(shí)系統(tǒng)的系統(tǒng)需求分析,歸納總結(jié)系統(tǒng)的業(yè)務(wù)流程;提出調(diào)度知識(shí)系統(tǒng)的硬件框架和軟件框架,實(shí)現(xiàn)系統(tǒng)的關(guān)鍵數(shù)據(jù)庫(kù)設(shè)計(jì)和軟件模塊設(shè)計(jì)。
[Abstract]:In the modern manufacturing mode, the static scheduling scheme can no longer adapt to the changeable job shop production environment. The scheduling method based on knowledge reasoning is one of the effective ways to solve this kind of problem. At present, most scheduling knowledge systems are based on the experience of experts in the field, and there are many problems, such as strong subjectivity, partial attribute of decision dependence, multi-source knowledge conflict and knowledge lag, etc. Aiming at the present situation of scheduling knowledge reasoning in dynamic workshop environment, this paper focuses on the dynamic selection of scheduling rules, and makes use of the production scheduling data in enterprise manufacturing systems. Genetic algorithm and BP artificial neural network algorithm are used to construct dynamic scheduling knowledge network, and a scheduling knowledge system based on dynamic knowledge network is designed. Firstly, the mathematical model of static job shop is established, and the optimal solution of the problem is obtained by genetic algorithm, such as coding and decoding, crossover, mutation and so on. The genetic algorithm flow of general static job shop scheduling problem is summarized. Secondly, by analyzing the common job scheduling rules and several complex rule scheduling methods, the research direction of this paper is determined as adaptive scheduling, the genetic algorithm is used to solve the optimal solution of the improved 4 脳 3 scheduling problem, and the BP artificial neural network algorithm is used to model the model. The input and output parameters of the network are defined, the conflict time decision points are extracted from the optimal solution of genetic algorithm, the input and output of artificial neural network are calculated, the training sample is obtained, and the nonlinear network relation is obtained from the training sample data. To guide the selection of scheduling rules under uncertain job shop conditions. Finally, the key strategies of scheduling knowledge system are analyzed, the system requirements of scheduling knowledge system are analyzed, the business process of the system is summarized, and the hardware and software framework of scheduling knowledge system is put forward. The key database design and software module design of the system are realized.
【學(xué)位授予單位】:合肥工業(yè)大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類(lèi)號(hào)】:TP18;TB497
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 安相華;牛春亮;薛冬娟;慕光宇;林曉華;;基于變粒度權(quán)重與群決策的產(chǎn)品服務(wù)系統(tǒng)方案優(yōu)選方法[J];計(jì)算機(jī)集成制造系統(tǒng);2016年01期
2 陰艷超;丁衛(wèi)剛;吳磊;;基于不確定規(guī)則推理的云制造知識(shí)服務(wù)方法[J];計(jì)算機(jī)集成制造系統(tǒng);2015年04期
3 王成龍;李誠(chéng);馮毅萍;榮岡;;作業(yè)車(chē)間調(diào)度規(guī)則的挖掘方法研究[J];浙江大學(xué)學(xué)報(bào)(工學(xué)版);2015年03期
4 馬玉敏;喬非;陳曦;田闊;伍星浩;;基于支持向量機(jī)的半導(dǎo)體生產(chǎn)線(xiàn)動(dòng)態(tài)調(diào)度方法[J];計(jì)算機(jī)集成制造系統(tǒng);2015年03期
5 趙詩(shī)奎;方水良;顧新建;;作業(yè)車(chē)間調(diào)度的空閑時(shí)間鄰域搜索遺傳算法[J];計(jì)算機(jī)集成制造系統(tǒng);2014年08期
6 杜曉舟;曹晨紅;喬建忠;林樹(shù)寬;;面向CPS節(jié)點(diǎn)操作系統(tǒng)的混合調(diào)度系統(tǒng)研究與設(shè)計(jì)[J];通信學(xué)報(bào);2013年12期
7 凌海峰;王西山;;求解柔性作業(yè)車(chē)間調(diào)度問(wèn)題的兩階段參數(shù)自適應(yīng)蟻群算法[J];中國(guó)機(jī)械工程;2013年24期
8 康玲;陳桂松;王時(shí)龍;李強(qiáng);郭亮;宋文艷;;云制造環(huán)境下基于本體的加工資源發(fā)現(xiàn)[J];計(jì)算機(jī)集成制造系統(tǒng);2013年09期
9 趙詩(shī)奎;方水良;;基于工序編碼和鄰域搜索策略的遺傳算法優(yōu)化作業(yè)車(chē)間調(diào)度[J];機(jī)械工程學(xué)報(bào);2013年16期
10 張曉冬;張志強(qiáng);陳進(jìn);段爽月;;基于交互仿真的生產(chǎn)決策專(zhuān)家系統(tǒng)構(gòu)建方法[J];計(jì)算機(jī)集成制造系統(tǒng);2013年02期
,本文編號(hào):2083485
本文鏈接:http://sikaile.net/guanlilunwen/gongchengguanli/2083485.html