蘆葦打包機(jī)關(guān)鍵機(jī)構(gòu)設(shè)計(jì)及其仿真分析
發(fā)布時(shí)間:2018-06-18 23:51
本文選題:蘆葦 + 打包機(jī)。 參考:《石河子大學(xué)》2014年碩士論文
【摘要】:蘆葦是作為造紙的非木材纖維優(yōu)質(zhì)原料,也是我國(guó)造紙工業(yè)的重要原料之一。蘆葦產(chǎn)區(qū)距造紙企業(yè)路途遙遠(yuǎn),不斷提高的運(yùn)輸成本已成為疆內(nèi)造紙企業(yè)擴(kuò)大規(guī)模提高效益遇到的主要瓶頸之一,將蘆葦打成高密度包是降低運(yùn)輸成本的有效方法,而蘆葦打包密度與打包機(jī)的工作性能密切相關(guān),故本文主要對(duì)高密度蘆葦打包機(jī)關(guān)鍵機(jī)構(gòu)展開研究和分析,主要內(nèi)容包括: (1)通過(guò)對(duì)影響蘆葦壓縮密度的因素進(jìn)行分析,采用閉式壓縮方法針對(duì)影響壓縮密度的喂入量,壓縮速度和含水率三個(gè)因素進(jìn)行壓縮試驗(yàn),得到影響蘆葦壓縮密度的因素顯著程度從大到小依次為喂入量、壓縮速度、含水率。在實(shí)驗(yàn)環(huán)境下喂入量為550g,壓縮速度在10mm/min,含水率為17%時(shí)可獲得較優(yōu)的壓實(shí)效果。試驗(yàn)結(jié)果表明在實(shí)際打包過(guò)程中,在一定范圍提高喂入量,優(yōu)先采用低水平壓縮速度和高含水率可提高打包密度。 (2)通過(guò)分析蘆葦打包機(jī)在工作過(guò)程中的功能要求對(duì)關(guān)鍵機(jī)構(gòu)——喂入壓縮機(jī)構(gòu)進(jìn)行設(shè)計(jì)并建模;計(jì)算確定偏心距、曲柄和曲柄連桿長(zhǎng)度分別為130mm,273mm和1048.5mm,并通過(guò)驗(yàn)證最小傳動(dòng)角證明設(shè)計(jì)合理;對(duì)喂入壓縮機(jī)構(gòu)進(jìn)行了運(yùn)動(dòng)學(xué)和動(dòng)力學(xué)仿真分析,得到二者在相互協(xié)同配合時(shí)的位移和速度變化情況以及關(guān)鍵零部件之間鉸接處受力情況;喂入動(dòng)作與壓縮動(dòng)作順序時(shí)差為0.085秒,配合精度符合要求;獲得喂入機(jī)構(gòu)中撥叉的掃掠軌跡和喂料撥叉在XY平而內(nèi)四個(gè)外廓極限位置,掃掠而積在0.1m2至0.2m.2之間;在撥叉喂入最高點(diǎn)處,撥叉曲柄與撥叉套軸鉸接處受力最大,最可能發(fā)生失效或破壞。 (3)基于有限元方法并利用Ansys軟件對(duì)關(guān)鍵零件曲柄連桿進(jìn)行模態(tài)分析,提取并分析了曲柄連桿前10階自由模態(tài)和約束模態(tài)的固有頻率和振型,分析結(jié)果表明,曲柄連桿在實(shí)際工作過(guò)程中變形可能性較大的位置為連桿中心及中心對(duì)稱的兩側(cè)位置。在ADAMS中建立壓縮機(jī)構(gòu)的剛?cè)峄旌夏P?對(duì)剛性模型和剛?cè)峄旌夏P偷乃俣群褪芰M(jìn)行對(duì)比分析,其分析結(jié)果表明,剛?cè)峄旌舷到y(tǒng)在系統(tǒng)啟動(dòng)時(shí)速度和力值波動(dòng)均較大,持續(xù)時(shí)間約為0.05秒,穩(wěn)定后與剛性系統(tǒng)的運(yùn)動(dòng)規(guī)律和受力情況基本吻合,最大幅值處相差幅值不超過(guò)0.5%;仿真結(jié)果表明曲柄連桿柔性對(duì)系統(tǒng)影響較小,剛體系統(tǒng)仿真結(jié)果滿足要求。
[Abstract]:Reed is one of the most important raw materials in China's papermaking industry. The Reed production area is far from the paper making enterprise, and the increasing transportation cost has become one of the main bottlenecks of increasing the scale and benefit of the paper making enterprises in Xinjiang. The effective way to reduce the transportation cost is to pack the Reed into a high-density bag. However, the packing density of Reed is closely related to the working performance of the baler, so this paper mainly studies and analyses the key mechanism of the high density Reed baler. The main contents are as follows: (1) by analyzing the factors affecting the compression density of Reed, the closed compression method is used to carry out compression tests on three factors: feed rate, compression speed and moisture content, which affect the compression density. The results showed that the factors influencing the compression density of Reed were feed rate, compression speed and moisture content from big to small. In the experimental environment, a better compaction effect can be obtained when the feeding rate is 550 g, the compression speed is 10 mm / min, and the moisture content is 17 mm / min. The experimental results show that the feeding rate is increased in a certain range during the actual packing process. The packing density can be increased by using low horizontal compression speed and high moisture content. (2) by analyzing the functional requirements of Reed baling machine in the working process, the key mechanism-feeding compression mechanism is designed and modeled. The eccentricity of crank and crank is determined to be 130mm 273mm and 1048.5mm respectively, and the minimum transmission angle is verified to be reasonable. The kinematics and dynamics simulation analysis of feeding compression mechanism are carried out. The displacement and velocity changes of the two parts and the stress between the key parts are obtained, the time difference between the feeding action and the compression action sequence is 0.085 seconds, and the matching accuracy meets the requirements. The sweep path of the fork in the feeding mechanism and the limit position of the feed fork in XY flat and inside four outer profiles are obtained, which sweep and accumulate between 0.1m2 and 0.2m.2; at the point where the fork is fed into the highest point, the forked fork crank and the fork sleeve shaft hinge have the greatest force. Based on finite element method and Ansys software, the modal analysis of crank and connecting rod of key parts is carried out, and the natural frequencies and modes of the first 10 free modes and constrained modes of crank and connecting rod are extracted and analyzed. The results show that the position where the crank connecting rod is more likely to deform is the center of the connecting rod and the position of both sides of the center symmetry. The rigid-flexible mixing model of compression mechanism is established in Adams. The speed and force of rigid model and rigid-flexible mixed model are compared and analyzed. The results show that the velocity and force of rigid-flexible hybrid system fluctuate greatly when the system starts. The duration is about 0.05 seconds, which is basically consistent with the motion and force of the rigid system after stabilization, and the maximum difference is less than 0.5. The simulation results show that the flexibility of crank and connecting rod has little effect on the system. The simulation results of rigid body system meet the requirements.
【學(xué)位授予單位】:石河子大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2014
【分類號(hào)】:TB486
【參考文獻(xiàn)】
相關(guān)期刊論文 前1條
1 姚光裕,畢松林;世界木材制漿造紙工業(yè)技術(shù)發(fā)展趨勢(shì)[J];世界林業(yè)研究;1993年06期
,本文編號(hào):2037345
本文鏈接:http://sikaile.net/guanlilunwen/gongchengguanli/2037345.html
最近更新
教材專著