催化纖維素制備乙二醇及新型膜分離研究
本文選題:纖維素 + 催化劑 ; 參考:《華南理工大學》2016年博士論文
【摘要】:持續(xù)減少的石化資源及不斷增長的能源消耗最終將導致能源的短缺以及嚴重的環(huán)境問題。利用可再生的生物質(zhì)資源制備能源及化學品將有效地解決上述問題,作為具有替代石化資源潛力的纖維素,是以葡萄糖單體為單元的天然高分子化合物,具有分布廣泛、儲量豐富、可再生、非食用等特點,在過去的十幾年里,采用纖維素類生物質(zhì)為原料制備高附加值化學品及能源逐漸引起人們的關(guān)注。在化學轉(zhuǎn)化纖維素類生物質(zhì)的研究中,水熱條件下催化轉(zhuǎn)化纖維素制備乙二醇被認為是極具潛力的過程,該化學轉(zhuǎn)化過程具有原子經(jīng)濟性極高、產(chǎn)物附加值高及市場需求大等特點。然而,由于纖維素分子間以及分子內(nèi)極強的氫鍵作用,溫和條件下有效地降解纖維素具有一定的挑戰(zhàn)。其次,纖維素降解產(chǎn)物高效轉(zhuǎn)化制備目標產(chǎn)物的控制相當復雜。第三,用于制備乙二醇的生物質(zhì)原料有待豐富。此外,乙二醇/水混合體系環(huán)保、低耗的分離純化技術(shù)手段急需開發(fā)。針對以上問題,本論文的主要內(nèi)容如下:1.采用超低濃度磷鎢酸(Phosphotungstic acid—PTA)水解纖維素制備葡萄糖的同時,選擇性催化斷裂葡萄糖C-C鍵,耦合釕碳(Ruthenium on carbon—Ru/AC)催化降解產(chǎn)物,當PTA濃度為0.03wt%,反應50min,實現(xiàn)纖維素100%轉(zhuǎn)化,乙二醇得率達53.1%。其次,探究PTA-Ru/AC復合催化劑穩(wěn)定性及回用性能,隨催化劑回用次數(shù)的增加催化劑催化性能逐漸降低,借助SEM、TEM、XPS、AAS、IR、TG等檢測手段表征反應前后催化劑,回用Ru/AC催化劑表面吸附有機物或發(fā)生結(jié)焦,導致催化劑顆粒絮聚,活性位點被遮蓋,乙二醇得率下降。此外,選擇纖維素二糖作為原料,用于乙二醇制備反應,采用HPLC-MS分析反應產(chǎn)物,研究乙二醇生成路徑,結(jié)果表明:催化轉(zhuǎn)化纖維素二糖制備乙二醇反應至少有三條路徑同時發(fā)生,且這三條路徑很可能存在于催化轉(zhuǎn)化纖維素制備乙二醇反應中。2.采用乙二醇水熱還原法制備以石墨烯(Graphene)為載體的雙金屬催化劑Ru-WO_3/Graphene,借助XRD、SEM、EDX、TEM等檢測手段,表征催化劑性質(zhì),催化劑具有特殊形貌特征,即納米棒狀WO_3和Ru金屬納米顆粒均勻分布在石墨烯載體表面。其次,采用Ru-WO_3/Graphene催化轉(zhuǎn)化纖維素制備乙二醇反應,研究反應溫度、反應時間、催化劑組成及用量等參數(shù)對產(chǎn)物種類及得率的影響。在最優(yōu)反應條件下,催化劑表現(xiàn)出較高的活性和選擇性,乙二醇最高得率達57.5%,纖維素100%轉(zhuǎn)化。此外,研究催化劑回用對反應產(chǎn)物得率的影響,借助XRD、SEM、TEM、TG、IR等檢測手段表征回收前后的催化劑,探究催化劑催化效果變化的原因。3.為豐富制備乙二醇的生物質(zhì)原料種類,實驗以工業(yè)廢棄物——木薯渣為原料,采用多種復合催化劑催化木薯渣制備乙二醇研究。首先,表征木薯渣成分,木薯渣中碳水化合物含量約占90wt%,有利于乙二醇的制備。其次,篩選不同復合催化劑催化轉(zhuǎn)化木薯渣制備乙二醇,Ru/AC-H_2WO_4表現(xiàn)出較好的活性及選擇性,245℃水熱條件下,反應60min,乙二醇得率達53.1%。此外,最優(yōu)反應條件下,研究Ru/AC-H_2WO_4復合催化劑穩(wěn)定性和可回用性能。催化劑回用四次后,乙二醇得率降至50%以下,借助XRD檢測表明:木薯渣成分中Ca和Fe等礦物元素與復合催化劑中H_2WO_4反應,生成不溶物CaWO_4和FeWO_4,消耗催化劑用量,乙二醇得率下降。4.采用溶劑熱法成功合成共價有機框架材料——COF-1,借助XRD、FT-IR、TG、TEM、SEM、BET等手段表征材料性質(zhì),COF-1為層狀結(jié)構(gòu),呈片狀,氮氣環(huán)境中450℃保持穩(wěn)定,具有較高的熱穩(wěn)定性,平均孔徑約0.7nm,比表面積710m~2/g。超聲剝離COF-1材料制備納米片作為COF-1膜構(gòu)成單元,在多種載體表面形成連續(xù)膜層,拓展了材料的應用范圍。借助氣體分離裝置,檢測單種氣體COF-1膜通透性能,材料具有較高的氫氣透過性能,且高溫下保持良好的穩(wěn)定性。5.采用溶劑熱法成功合成亞胺鍵連接的共價有機框架材料——ACOF-1,借助XRD、FT-IR、TG、TEM、SEM、BET等檢測手段表征材料性質(zhì),ACOF-1呈片狀,含有C=N-N共價鍵組成的環(huán)狀結(jié)構(gòu),在氮氣環(huán)境中,熱穩(wěn)定性可達320℃,材料比表面積為819m~2/g,平均孔徑約1.22nm。超聲剝離ACOF-1材料形成納米片作為ACOF-1膜組成單元,負載在陶瓷管表面,形成連續(xù)、完整的膜。借助滲透蒸發(fā)技術(shù),考察ACOF-1膜分離乙二醇/水混合體系性能,ACOF-1膜對乙二醇/水混合體系一直保持良好的分離性能,穩(wěn)定性較好,當乙二醇濃度為90%,50℃條件下,ACOF-1膜滲透通量為0.139kg/(m~2h),分離因子為552。
[Abstract]:The continuous reduction of petrochemical resources and increasing energy consumption will eventually lead to a shortage of energy and serious environmental problems. The use of renewable biomass resources to produce energy and chemicals will effectively solve the above problems as a cellulose that has the potential to replace the petrochemical resources and is a natural high grade with the glucose monomer as the unit. Subcompounds are widely distributed, rich in reserves, renewable and non edible. In the past decade, the use of cellulosic biomass as raw material to prepare high value-added chemicals and energy has gradually aroused people's attention. In the study of chemical conversion of cellulose biomass, the catalytic conversion of cellulose to ethylene glycol under hydrothermal conditions It is considered to be a highly potential process with high atomic economy, high added value and large market demand. However, the effective degradation of cellulose under mild conditions has a definite challenge due to the intermolecular and intramolecular strong hydrogen bonds. Secondly, the efficient transformation of cellulose degradation products. Third, the biomass for preparation of glycol remains to be rich. In addition, the ethylene glycol / water mixture system is environmentally friendly and the low consumption separation and purification techniques are urgently needed. The main contents of this paper are as follows: 1. hydrolysis of ultra low concentration phosphotungstic acid (Phosphotungstic acid - PTA) When the glucose is prepared by cellulose, the glucose C-C bond is selectively catalyzed and the ruthenium carbon (Ruthenium on carbon - Ru/AC) is coupled to catalyze the degradation products. When the concentration of PTA is 0.03wt%, the reaction 50min, the cellulose 100% is converted, the ethylene glycol yield is up to 53.1%. next, and the stability and reuse performance of the PTA-Ru/ AC composite catalyst is explored and the catalyst is reused with the catalyst. The catalytic performance of the catalyst decreased gradually. With the help of SEM, TEM, XPS, AAS, IR, TG and other detection methods, the catalyst was characterized before and after the reaction, and the organic matter was adsorbed on the surface of the Ru/AC catalyst or coking, which resulted in the flocculation of the catalyst particles, the active site was covered and the yield of ethylene glycol decreased. In addition, the cellulose two sugar was selected as the raw material and used in B two as the material. The reaction products were prepared by HPLC-MS, and the production path of ethylene glycol was studied. The results showed that at least three routes were produced by catalytic conversion of cellulose two sugar to ethylene glycol, and the three paths were likely to be prepared by the hydrothermal reduction of ethylene glycol in the catalytic conversion of cellulose to ethylene glycol in the catalytic conversion of cellulose to.2.. Graphene as a bimetallic catalyst Ru-WO_3/Graphene, with the help of XRD, SEM, EDX, TEM and other detection methods to characterize the catalyst, the catalyst has special features, that is, the nano rod like WO_3 and Ru metal nanoparticles are evenly distributed on the surface of the graphene carrier. Secondly, a Ru-WO_3/Graphene catalyzed conversion of cellulose to the preparation of B two is made. The effects of reaction temperature, reaction time, catalyst composition and dosage on the product type and yield were studied. Under the optimal reaction conditions, the catalyst showed high activity and selectivity, the highest yield of ethylene glycol was 57.5%, cellulose 100% was converted. In addition, the effect of the catalyst reuse on the yield of the reaction products was studied with the aid of XRD, SEM, TEM, TG, IR and other detection methods were used to characterize the catalyst before and after recovery, and to explore the cause of the change in the catalytic effect of the catalyst.3. was a kind of biomass for the preparation of ethylene glycol. The experiment was made of cassava residue from cassava residue, which was used as the material of industrial waste - cassava residue as raw material. The carbohydrate content in sweet potato residue is about 90wt%, which is beneficial to the preparation of ethylene glycol. Secondly, different composite catalysts are screened to catalyze the conversion of tapioca residue to ethylene glycol, and Ru/AC-H_2WO_4 shows good activity and selectivity. Under the condition of water and heat at 245 C, the reaction of 60min and ethylene glycol yield to 53.1%., and the study of Ru/AC-H_2WO_4 under the optimal reaction conditions When the catalyst was used for four times, the yield of ethylene glycol was reduced to less than 50%. The XRD test showed that the mineral elements such as Ca and Fe were reacted with H_2WO_4 in the composition of the cassava residue, and the insoluble CaWO_4 and FeWO_4 were generated, the amount of catalyst was consumed and the yield of ethylene glycol decreased by the solvent heat method. The synthetic covalent organic frame material, COF-1, characterizing the material properties by means of XRD, FT-IR, TG, TEM, SEM, BET, and so on. COF-1 is a layered structure, and it is stable at 450 C in the nitrogen environment, with high thermal stability and an average pore size of about 0.7nm. The nanoscale film is prepared as a membrane component with the specific surface area 710m~ 2/g. ultrasonic stripped COF-1 material. A continuous film is formed on the surface of a variety of carriers to expand the application range of the material. With the aid of gas separation device, the permeability of the single gas COF-1 film is detected. The material has high hydrogen permeability and good stability at high temperature..5. is successfully synthesized by the solvent heat method, the covalent organic frame material of the imide bond, ACOF-1 By means of XRD, FT-IR, TG, TEM, SEM, BET and other detection methods, the properties of the materials are characterized. ACOF-1 is flaky and contains a circular structure consisting of C=N-N covalent bonds. In the nitrogen environment, the thermal stability is up to 320, the specific surface area of the material is 819m~2/g, and the average pore size about 1.22nm. ultrasonic stripping ACOF-1 material is formed as a member of the ACOF-1 membrane, and the load is in pottery. On the surface of the porcelain tube, a continuous and complete membrane was formed. By pervaporation, the performance of ACOF-1 membrane was separated from the mixture of ethylene glycol / water. The ACOF-1 membrane had good separation performance and good stability for the ethylene glycol / water mixture system. When the ethylene glycol concentration was 90%, 50 C, the permeation flux of ACOF-1 membrane was 0.139kg/ (m~2h) and the separation factor was 5 Fifty-two
【學位授予單位】:華南理工大學
【學位級別】:博士
【學位授予年份】:2016
【分類號】:TQ223.162;TQ028.8
【相似文獻】
相關(guān)期刊論文 前10條
1 劉玲娜;張強;;乙二醇醚生產(chǎn)技術(shù)及市場應用[J];化工中間體;2012年05期
2 ;生產(chǎn)乙基乙二醇醚的新方法[J];江蘇化工;1980年03期
3 祝軼;聚四亞甲基乙二醇醚[J];精細化工;1986年03期
4 王永杰,李文釗,劉金龍;乙二醇醚生產(chǎn)技術(shù)的進展[J];石油化工;1999年03期
5 崔小明;我國乙二醇生產(chǎn)技術(shù)進展及市場分析[J];江蘇化工;2005年01期
6 汪家銘;;乙二醇發(fā)展概況及市場前景[J];合成技術(shù)及應用;2009年04期
7 夏紀鼎,胡征宇;十二醇聚乙二醇醚分子量分布與其溶液界面性能的關(guān)系[J];應用化學;1985年04期
8 ;科技薈萃[J];今日科技;1987年07期
9 ;道化學公司擴大乙二醇醚生產(chǎn)[J];吉化科技;1994年01期
10 宋冠秦;我國乙二醇的生產(chǎn)與需求[J];現(xiàn)代化工;1995年12期
相關(guān)會議論文 前2條
1 張木;王永杰;李晨曦;;合成乙二醇醚催化劑的研究進展[A];第十一屆全國青年催化學術(shù)會議論文集(上)[C];2007年
2 王永杰;;連續(xù)式催化制備乙二醇乙醚[A];第十一屆全國青年催化學術(shù)會議論文集(下)[C];2007年
相關(guān)重要報紙文章 前1條
1 金霖;乙二醇醚:需求強勁 發(fā)展當慎[N];中國化工報;2003年
相關(guān)博士學位論文 前1條
1 張凱;催化纖維素制備乙二醇及新型膜分離研究[D];華南理工大學;2016年
相關(guān)碩士學位論文 前7條
1 許國莉;乙二醇醚的合成及其水溶液相圖的研究[D];黑龍江大學;2015年
2 潘兵;膜反應器中乙二醇乙醚的合成研究[D];天津工業(yè)大學;2008年
3 趙立興;銅催化空氣氧化選擇性斷裂乙二醇醚中飽和C-C鍵的研究[D];贛南師范學院;2012年
4 雷海琴;甲基丙烯酸(聚)乙二醇醚單酯合成工藝研究[D];南京林業(yè)大學;2009年
5 朱舟;清潔行為及其引發(fā)的化學反應對室內(nèi)空氣質(zhì)量的影響研究[D];湖南大學;2007年
6 孫奇;環(huán)氧乙烷催化水合制乙二醇的工藝研究[D];江蘇工業(yè)學院;2009年
7 戴忻;環(huán)氧乙烷的吸收和催化水合法合成乙二醇[D];南京工業(yè)大學;2004年
,本文編號:2000404
本文鏈接:http://sikaile.net/guanlilunwen/gongchengguanli/2000404.html