分布式水下定位網(wǎng)中的時(shí)延差定位算法研究與實(shí)現(xiàn)
本文選題:Chan + Fang。 參考:《哈爾濱工程大學(xué)》2014年碩士論文
【摘要】:分布式水聲定位技術(shù)根據(jù)其定位方式的不同,可以分為有源和無(wú)源定位技術(shù)兩種;根據(jù)定位算法的不同,可以選擇不同的數(shù)學(xué)定位模型,其中包括雙曲線定位、球面定位數(shù)學(xué)模型。無(wú)論是哪種數(shù)學(xué)定位模型,目標(biāo)與水下潛標(biāo)之間的斜距都是通過(guò)聲音傳播時(shí)間與速度的乘積得到的,目標(biāo)位置估計(jì)是通過(guò)求解非線性方程組得到的。本文介紹了三種常用的基于信號(hào)到達(dá)時(shí)間差(TDOA)的定位算法:Chan算法、Fang算法和Taylor算法。通過(guò)仿真分析了不同算法的定位精度,時(shí)延差定位算法在高斯環(huán)境下,潛標(biāo)數(shù)目為三個(gè)時(shí)Fang氏算法比較精確,潛標(biāo)數(shù)目大于等于四個(gè)時(shí)Chan算法優(yōu)于Fang算法,是因?yàn)镃han算法能利用分布式定位系統(tǒng)中的所有時(shí)延差測(cè)量值,可以減少隨機(jī)測(cè)量誤差帶來(lái)的影響,獲得較好的定位結(jié)果;在TDOA測(cè)量誤差較小時(shí),Chan和Taylor兩種算法的定位精度比較接近,但是隨著時(shí)延差誤差的增大Taylor展開(kāi)法要優(yōu)于Chan氏算法,定位精度要高一些。當(dāng)Taylor展開(kāi)算法初值選擇較好時(shí),Taylor級(jí)數(shù)展開(kāi)算法要比Chan氏算法的定位精度高,但當(dāng)Taylor算法的初值選擇不理想時(shí),定位算法的精度就會(huì)很不好。本文綜合以上幾種算法總結(jié)出一種基于Taylor展開(kāi)法、Fang算法和Chan氏算法的協(xié)同定位法。當(dāng)潛標(biāo)數(shù)目為三個(gè)時(shí)將Fang算法的仿真得到的移動(dòng)目標(biāo)位置作為Taylor展開(kāi)算法的初始值;當(dāng)潛標(biāo)數(shù)目大于等于四個(gè)時(shí),將Chan仿真得到的移動(dòng)目標(biāo)位置作為Taylor展開(kāi)法的初始值。協(xié)同算法精度明顯高于其中任何一種單獨(dú)的算法。通過(guò)對(duì)定位誤差形成原因的推導(dǎo)和分析,得出了影響定位系統(tǒng)的關(guān)鍵因素,其中包括時(shí)延估計(jì)、聲學(xué)定位系統(tǒng)本身引起的定位誤差、GPS定位系統(tǒng)引起的定位誤差、水聲信道多途所引起的誤差、聲速測(cè)量誤差引起的定位誤差以及由于目標(biāo)運(yùn)動(dòng)對(duì)定位的影響。分析不同誤差下定位區(qū)域內(nèi)各個(gè)點(diǎn)的定位精度并對(duì)誤差進(jìn)行補(bǔ)償,采用等效聲速剖面進(jìn)行時(shí)延差計(jì)算;在定位區(qū)域內(nèi),中心位置定位精度最高,定位誤差起伏較小,以中心向外輻射,距離中心越遠(yuǎn)的區(qū)域定位精度越低起伏越大;結(jié)合各項(xiàng)技術(shù)的現(xiàn)狀和目標(biāo)系統(tǒng)的性能,設(shè)計(jì)了定位系統(tǒng)的定位算法并進(jìn)行了驗(yàn)證。
[Abstract]:The distributed underwater acoustic positioning technology can be divided into active and passive positioning technology according to its different positioning methods, and different mathematical positioning models can be selected according to the different localization algorithms, including hyperbolic positioning, The mathematical model of spherical positioning. Regardless of the mathematical positioning model, the oblique distance between the target and the underwater submersible is obtained by the product of sound propagation time and velocity, and the target position estimation is obtained by solving the nonlinear equations. In this paper, three common localization algorithms based on time difference of arrival (TDOAA) are introduced, namely: Chan algorithm Fang algorithm and Taylor algorithm. The location accuracy of different algorithms is analyzed by simulation. In Gao Si environment, Fang's algorithm is more accurate when the number of submarklets is three, and the number of submarkage is greater than or equal to four times Chan algorithm is better than Fang algorithm. The reason is that Chan algorithm can make use of all the time-delay difference measurements in distributed positioning system, which can reduce the impact of random measurement error and obtain better localization results. When the measurement error of TDOA is small, the accuracy of two algorithms, Chan and Taylor, is close, but with the increase of delay error, Taylor expansion method is better than Chan's algorithm, and the positioning accuracy is higher. When the initial value of Taylor expansion algorithm is better, the accuracy of Taylor series expansion algorithm is higher than that of Chan's algorithm, but when the initial value selection of Taylor expansion algorithm is not ideal, the accuracy of the algorithm will be very poor. In this paper, we sum up a cooperative localization method based on Taylor expansion algorithm Fang algorithm and Chan's algorithm. When the number of submarklets is three, the moving target position obtained by Fang algorithm is taken as the initial value of Taylor expansion algorithm, and the moving target position obtained by Chan simulation is regarded as the initial value of Taylor expansion method when the number of submarkmarks is greater than or equal to four. The precision of cooperative algorithm is obviously higher than that of any single algorithm. Through the derivation and analysis of the reasons for the formation of the positioning error, the key factors affecting the positioning system are obtained, including the time delay estimation, the positioning error caused by the acoustic positioning system and the positioning error caused by the GPS positioning system. The errors caused by multiple paths in underwater acoustic channels, the positioning errors caused by the measurement errors of sound velocity, and the effects of target motion on positioning. This paper analyzes the positioning accuracy of each point in the location area under different errors and compensates the error, and calculates the delay difference by using the equivalent sound velocity profile. In the location area, the positioning accuracy of the center position is the highest, and the fluctuation of the positioning error is relatively small. With the center radiating, the location accuracy of the region farther away from the center is lower and more fluctuating. Combined with the present situation of each technology and the performance of the target system, the location algorithm of the positioning system is designed and verified.
【學(xué)位授予單位】:哈爾濱工程大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2014
【分類號(hào)】:TB56
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 方文明;;基于等效聲速剖面法及其改進(jìn)模型的聲速改正方法研究[J];中國(guó)水運(yùn)(下半月);2013年07期
2 丁翠環(huán);郭燕子;韓碩;;非同步長(zhǎng)基線水聲定位系統(tǒng)誤差仿真分析[J];艦船電子工程;2013年03期
3 葉永;陳建峰;張竹;冷欣;;基于非線性規(guī)劃模型的分布式聲定位算法研究[J];傳感器與微系統(tǒng);2013年02期
4 孫大軍;鄭翠娥;錢洪寶;李昭;;水聲定位系統(tǒng)在海洋工程中的應(yīng)用[J];聲學(xué)技術(shù);2012年02期
5 雷斌;孫舟;;分布式聲源定位算法實(shí)現(xiàn)[J];西安工業(yè)大學(xué)學(xué)報(bào);2011年02期
6 郭永峰;紀(jì)少君;唐長(zhǎng)全;;引進(jìn)人工海底概念的深水鉆井技術(shù)[J];天津科技;2009年05期
7 李安;唐勁松;薛永華;;基于尋找等距線和等距差線交點(diǎn)法InSAS測(cè)深系統(tǒng)聲速補(bǔ)償技術(shù)[J];計(jì)算機(jī)與數(shù)字工程;2009年10期
8 梁民贊;陸揚(yáng);周新鵬;;一種抑制卡爾曼濾波發(fā)散的實(shí)時(shí)數(shù)據(jù)處理方法[J];聲學(xué)技術(shù);2008年05期
9 孫樹民;李悅;;淺談水下定位技術(shù)的發(fā)展[J];廣東造船;2006年04期
10 王澤民,羅建國(guó),陳琴仙,田力;水下高精度立體定位導(dǎo)航系統(tǒng)[J];聲學(xué)與電子工程;2005年02期
相關(guān)博士學(xué)位論文 前5條
1 張光普;導(dǎo)航定位通信一體化系統(tǒng)總體技術(shù)研究[D];哈爾濱工程大學(xué);2008年
2 蘭華林;深海水聲應(yīng)答器定位導(dǎo)航技術(shù)研究[D];哈爾濱工程大學(xué);2008年
3 付進(jìn);長(zhǎng)基線定位信號(hào)處理若干關(guān)鍵技術(shù)研究[D];哈爾濱工程大學(xué);2007年
4 孫萬(wàn)卿;淺海水聲定位技術(shù)及應(yīng)用研究[D];中國(guó)海洋大學(xué);2007年
5 蔡艷輝;差分GPS水下定位系統(tǒng)集成關(guān)鍵技術(shù)研究[D];遼寧工程技術(shù)大學(xué);2007年
相關(guān)碩士學(xué)位論文 前7條
1 張建喜;基于長(zhǎng)基線定位系統(tǒng)的水聲定位技術(shù)研究[D];東華理工大學(xué);2012年
2 孫舟;分布式聲源定位關(guān)鍵參數(shù)設(shè)計(jì)及定位算法實(shí)現(xiàn)[D];西安工業(yè)大學(xué);2011年
3 薛睿;水下機(jī)器人水聲定位系統(tǒng)干端設(shè)備的研制[D];哈爾濱工程大學(xué);2009年
4 夏秋洪;某水下目標(biāo)跟蹤系統(tǒng)顯控軟件的設(shè)計(jì)與實(shí)現(xiàn)[D];哈爾濱工程大學(xué);2009年
5 曲禎鈺;無(wú)線傳感器網(wǎng)絡(luò)中時(shí)間同步和定位技術(shù)研究[D];東北大學(xué);2008年
6 褚德欣;利用聲納技術(shù)對(duì)水下拋投體及根石探測(cè)定位方法的研究[D];太原理工大學(xué);2006年
7 潘繼成;水下機(jī)器人水聲定位系統(tǒng)硬件的設(shè)計(jì)與實(shí)現(xiàn)[D];哈爾濱工程大學(xué);2006年
,本文編號(hào):1998018
本文鏈接:http://sikaile.net/guanlilunwen/gongchengguanli/1998018.html