雙路AOTF驅(qū)動(dòng)電路及其超聲換能器匹配電路的設(shè)計(jì)
本文選題:光譜成像 + 雙路AOTF。 參考:《中北大學(xué)》2017年碩士論文
【摘要】:光譜成像技術(shù)是研究目標(biāo)物質(zhì)在不同波長下采集的圖像信息和光譜信息,并根據(jù)其光譜特征對(duì)目標(biāo)物質(zhì)進(jìn)行探測和分析,廣泛應(yīng)用于遙感測量、深空探測等領(lǐng)域。隨著光譜成像技術(shù)的發(fā)展,對(duì)其光譜測量范圍、光譜分辨率、成像清晰度等要求越來越高。當(dāng)前采用第四代分光技術(shù)的聲光可調(diào)諧濾光器(Acousto-Optic Tunable Filter,AOTF)被廣泛應(yīng)用于光譜成像系統(tǒng),AOTF作為光譜成像系統(tǒng)的分光器件,其工作波長范圍、光譜衍射效率及分辨率等參數(shù)對(duì)光譜成像系統(tǒng)的性能起到?jīng)Q定性的影響,因此研究如何提高AOTF性能參數(shù)對(duì)AOTF的發(fā)展具有一定的現(xiàn)實(shí)意義。AOTF的性能主要受到AOTF驅(qū)動(dòng)電路系統(tǒng)和AOTF內(nèi)部的超聲換能器匹配電路的影響,由此,本文設(shè)計(jì)了一種高性能AOTF驅(qū)動(dòng)電路以及雙路超聲換能器匹配電路。AOTF作為功率驅(qū)動(dòng)型器件,按其工作所需功率要求,設(shè)計(jì)了一種具有一定帶寬且功率輸出穩(wěn)定的AOTF驅(qū)動(dòng)電路,其輸出功率在50~210MHz帶寬范圍內(nèi)穩(wěn)定在33~35dBm,較好地滿足AOTF最佳工作要求。超聲換能器作為AOTF重要部件,其在不同頻率下具有不同的輸入阻抗,當(dāng)AOTF驅(qū)動(dòng)電路的輸出阻抗與換能器輸入阻抗失配時(shí)會(huì)產(chǎn)生能量損耗,導(dǎo)致驅(qū)動(dòng)功率無法最大限度的傳遞給換能器,從而使AOTF光譜衍射效率降低,影響光譜圖像清晰度。為此,通過對(duì)超聲換能器阻抗頻率特性的深入研究,運(yùn)用濾波器網(wǎng)絡(luò)匹配理論及射頻電路理論,設(shè)計(jì)了一種頻帶寬、光譜衍射效率及功率效率高的新型匹配電路。在實(shí)驗(yàn)測試平臺(tái)上,對(duì)AOTF驅(qū)動(dòng)電路以及雙路超聲換能器匹配電路進(jìn)行實(shí)驗(yàn)與優(yōu)化,最終測得AOTF的光譜衍射效率最高達(dá)93.9%,光譜帶寬小于5nm,雙路換能器匹配電路功率效率達(dá)到90%以上,提高了在420~1150nm波段范圍內(nèi)的光譜衍射效率及分辨率。最后對(duì)光譜成像系統(tǒng)樣機(jī)進(jìn)行外景測試,實(shí)測目標(biāo)的成像質(zhì)量得到明顯改善。
[Abstract]:Spectral imaging technology is to study the image information and spectral information collected by the target material at different wavelengths, and to detect and analyze the target material according to its spectral characteristics. It is widely used in remote sensing, deep space exploration and other fields. With the development of spectral imaging technology, the requirements of spectral measurement range, spectral resolution and imaging clarity are becoming higher and higher. At present, Acousto-Optic Tunable filter AOTFs (Acousto-Optic tunable filter AOTFs) are widely used in spectral imaging system (AOTF) as spectroscopic devices. Parameters such as spectral diffraction efficiency and resolution play a decisive role in the performance of the spectral imaging system. Therefore, the study of how to improve AOTF performance parameters has certain practical significance for the development of AOTF. AOTF performance is mainly affected by AOTF driving circuit system and ultrasonic transducer matching circuit within AOTF. In this paper, a high performance AOTF drive circuit and a dual-channel ultrasonic transducer matching circuit. AOTF is designed as a power driving device. According to the power requirements of its work, an AOTF driving circuit with a certain bandwidth and stable power output is designed. The output power is stable in the bandwidth range of 50 ~ 210MHz and is 33 ~ 35dBm, which can meet the best requirements of AOTF. As an important part of AOTF, ultrasonic transducer has different input impedance at different frequencies. When the output impedance of AOTF drive circuit mismatches with input impedance of transducer, energy loss will occur. Because the driving power can not be transferred to the transducer to the maximum extent, the AOTF spectral diffraction efficiency is reduced and the clarity of the spectral image is affected. Therefore, a novel matching circuit with high frequency bandwidth, spectral diffraction efficiency and power efficiency is designed by studying the impedance frequency characteristics of ultrasonic transducers, using filter network matching theory and radio frequency circuit theory. On the experimental test platform, the AOTF driving circuit and the dual-channel ultrasonic transducer matching circuit are tested and optimized. The spectral diffraction efficiency is up to 93.9, the spectral bandwidth is less than 5 nm, and the power efficiency of the dual-channel transducer matching circuit is over 90%, which improves the spectral diffraction efficiency and resolution in the 420~1150nm band. Finally, the imaging quality of the measured target is improved obviously by the field test of the prototype of the spectral imaging system.
【學(xué)位授予單位】:中北大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TP391.41;TB552
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 王玉江;王志斌;宋雁鵬;解琨陽;趙同林;;壓電超聲換能器阻抗特性分析與匹配設(shè)計(jì)[J];壓電與聲光;2016年04期
2 王玉江;王志斌;王耀利;宋雁鵬;李晉華;張敏娟;薛銳;;寬光譜AOTF匹配網(wǎng)絡(luò)對(duì)光譜衍射效率影響的研究[J];光譜學(xué)與光譜分析;2016年07期
3 王耀利;溫廷敦;王志斌;張瑞;李永帥;;基于AOTF多光譜成像的高性能射頻驅(qū)動(dòng)系統(tǒng)[J];計(jì)算機(jī)工程與設(shè)計(jì);2015年09期
4 宋雁鵬;李曉;王志斌;王耀利;李克武;;聲光可調(diào)諧濾波器驅(qū)動(dòng)系統(tǒng)設(shè)計(jì)[J];壓電與聲光;2015年04期
5 張偉濤;張永俊;姚震;;基于Matlab壓電超聲換能器匹配電路的研究[J];電加工與模具;2014年02期
6 劉濟(jì)帆;馬艷華;張雷;舒嶸;;基于AOTF的光譜響應(yīng)可編程成像光譜系統(tǒng)關(guān)鍵技術(shù)[J];紅外與毫米波學(xué)報(bào);2013年03期
7 張澤紅;趙治國;雷波;王智林;何曉亮;;寬光譜聲光可調(diào)濾光器[J];壓電與聲光;2013年01期
8 胡善洲;陳奮飛;曾立波;吳瓊水;;成像型聲光可調(diào)諧濾光器關(guān)鍵性能指標(biāo)測試方法研究[J];光譜學(xué)與光譜分析;2013年01期
9 陳奮飛;劉佳;廖乘勝;曾立波;吳瓊水;;一種高通量寬帶近紅外聲光可調(diào)濾光器的設(shè)計(jì)[J];光譜學(xué)與光譜分析;2013年01期
10 趙慧潔;程宣;張穎;;用于火星探測的聲光可調(diào)諧濾波器成像光譜儀[J];光學(xué)精密工程;2012年09期
,本文編號(hào):1986930
本文鏈接:http://sikaile.net/guanlilunwen/gongchengguanli/1986930.html