考慮磁滯瞬態(tài)損耗的GMA在振動主動控制中的應用
本文選題:超磁致伸縮致動器 + 磁滯損耗 ; 參考:《武漢理工大學》2014年碩士論文
【摘要】:隨著技術的發(fā)展,柔性結構的應用日益廣泛,特別是在精密儀器儀表的測量與使用場合。由于柔性結構的大撓度、小阻尼等特點,結構的振動依靠自身衰減需要很長時間,影響儀器的準確性,因而需要對柔性結構的振動進行主動控制。超磁致伸縮致動器以其響應快,應變大的特點,在振動主動控制中越來越廣泛。本文以超磁致伸縮致動器的動態(tài)模型為基礎,以懸臂梁為被控對象,研究了超磁致伸縮致動器在考慮磁滯損耗時對懸臂梁的振動主動控制。主要完成了以下研究工作: (1)研究了超磁致伸縮致動器(GMA)的結構設計?紤]磁滯損耗的影響,采用堆疊結構的GMM棒,完成GMA整體結構設計,同時對GMA進行了電磁分析,驗證結構的合理性,并完成了GMA實物的加工。 (2)研究了磁滯損耗。為了考慮磁滯損耗的影響,引入了磁滯損耗滯后的概念,并將磁滯損耗以虛部的形式反映到壓磁方程的相關參數(shù)上,建立了致動器的動態(tài)模型。搭建了阻抗測試實驗平臺,通過實驗測得了致動器線圈的阻抗-頻率關系曲線,并求得了磁滯損耗所產(chǎn)生的相位滯后角的大小。 (3)研究了系統(tǒng)建模,,包括懸臂梁的動態(tài)微分方程、超磁致伸縮致動器的傳遞函數(shù)模型,利用ANSYS分析確定了懸臂梁的各參數(shù),研究了獨立模態(tài)空間控制方法,完成了模態(tài)增益等參數(shù)的求取。完成了懸臂梁的實物加工。 (4)研究了模糊PID控制的設計。在傳統(tǒng)PID控制的基礎上,通過MATLAB完成了PID控制器的初始參數(shù)整定,將模糊控制與傳統(tǒng)PID控制結合,根據(jù)實際的控制經(jīng)驗,得到了具有一定自適應能力的控制器。最后通過仿真得到了在模糊PID控制器作用下系統(tǒng)對階躍輸入的響應曲線。 (5)研究了振動主動控制系統(tǒng)實驗。以LabVIEW為編程軟件,結合已有的設備條件,搭建了振動主動控制實驗系統(tǒng),研究了在隨機激勵和激振器激勵下,致動器的輸出對懸臂梁振動曲線的不同影響。 本課題建立超磁致伸縮致動器在磁滯損耗下的動態(tài)模型,并將其應用到柔性結構的振動主動控制中,獲得了較好的振動控制效果,為超磁致伸縮致動器在振動主動控制中的進一步實際應用提供一定的參考價值。
[Abstract]:With the development of technology, flexible structures are widely used, especially in the measurement and application of precision instruments. Due to the characteristics of flexible structure such as large deflection and small damping, it takes a long time for the vibration of the structure to be attenuated by itself, which affects the accuracy of the instrument, so it is necessary to control the vibration of the flexible structure actively. Giant Magnetostrictive Actuator (GMA) is widely used in active vibration control due to its fast response and large strain. Based on the dynamic model of Giant Magnetostrictive Actuator (GMA) and the cantilever beam as controlled object, the active vibration control of Giant Magnetostrictive Actuator (GMA) to cantilever beam considering hysteresis loss is studied in this paper. The following research work has been completed: The structure design of Giant Magnetostrictive Actuator (GMA) is studied. Considering the effect of hysteresis loss, the whole structure of GMA is designed by using stacked GMM rod. At the same time, the electromagnetic analysis of GMA is carried out to verify the rationality of the structure, and the processing of GMA is completed. The hysteresis loss is studied. In order to consider the effect of hysteresis loss, the concept of hysteresis loss lag is introduced, and the hysteresis loss is reflected in the form of imaginary part on the parameters of the piezomagnetic equation, and the dynamic model of actuator is established. The impedance test platform was built and the impedance frequency curve of actuator coil was measured. The phase lag angle caused by hysteresis loss was obtained. 3) the system modeling is studied, including the dynamic differential equation of cantilever beam, the transfer function model of giant magnetostrictive actuator, the parameters of cantilever beam are determined by ANSYS analysis, and the independent modal space control method is studied. The modal gain and other parameters are obtained. The material processing of cantilever beam is completed. The design of fuzzy PID control is studied. Based on the traditional PID control, the initial parameter tuning of the PID controller is completed by MATLAB, and the fuzzy control is combined with the traditional PID control. According to the actual control experience, the controller with certain adaptive ability is obtained. Finally, the response curve of the system to step input under the action of fuzzy PID controller is obtained by simulation. The experiment of active vibration control system is studied. Taking LabVIEW as the programming software and combining with the existing equipment conditions, a vibration active control experimental system is built. The different effects of the actuator output on the vibration curve of the cantilever beam under random excitation and vibration exciter excitation are studied. In this paper, the dynamic model of giant magnetostrictive actuator under hysteresis loss is established and applied to the active vibration control of flexible structures. It provides some reference value for the practical application of giant magnetostrictive actuator in active vibration control.
【學位授予單位】:武漢理工大學
【學位級別】:碩士
【學位授予年份】:2014
【分類號】:TB535
【參考文獻】
相關期刊論文 前10條
1 關文閣;楊黎萌;魏翠玲;;應用MATLAB計算結構自振頻率和振型的一種方法[J];工程地質計算機應用;2004年01期
2 高為國,劉金武;超磁致伸縮材料及其在微機器人中的應用[J];湖南工程學院學報(自然科學版);2003年02期
3 盧全國;陳定方;魏國前;丁建軍;;GMM的發(fā)展現(xiàn)狀及其在精密致動器件中的應用[J];湖北工業(yè)大學學報;2006年03期
4 李華;張德遠;季遠;;磁致伸縮致動器的動態(tài)響應特性研究[J];機械科學與技術;2006年03期
5 賈振元,楊興,郭東明,侯璐景;超磁致伸縮材料微位移執(zhí)行器的設計理論及方法[J];機械工程學報;2001年11期
6 陶孟侖;陳定方;盧全國;舒亮;趙亞鵬;;超磁致伸縮材料動態(tài)渦流損耗模型及試驗分析[J];機械工程學報;2012年13期
7 李淑英;王博文;周嚴;翁玲;王志華;;疊層復合磁致伸縮材料驅動器的輸出位移特性[J];儀器儀表學報;2009年01期
8 鄔義杰,劉楚輝;超磁致伸縮驅動器設計方法的研究[J];浙江大學學報(工學版);2004年06期
9 曹淑瑛,王博文,閆榮格,黃文美,翁玲;超磁致伸縮致動器的磁滯非線性動態(tài)模型[J];中國電機工程學報;2003年11期
10 剛完約,梅德慶,陳子辰,傅龍珠;超磁致伸縮微致動器的磁場有限元分析[J];中國機械工程;2003年22期
本文編號:1945997
本文鏈接:http://sikaile.net/guanlilunwen/gongchengguanli/1945997.html