纖毛式MEMS矢量水聽器研究
本文選題:矢量水聽器 + 微機(jī)電系統(tǒng)。 參考:《西北工業(yè)大學(xué)》2015年博士論文
【摘要】:隨著艦船減振降噪技術(shù)的發(fā)展,傳統(tǒng)的聲納探測技術(shù)受到前所未有的挑戰(zhàn),各主要海軍國家紛紛探索基于新效應(yīng)、新原理、新工藝的新型換能器進(jìn)行水下聲目標(biāo)檢測。目前,水下目標(biāo)檢測手段主要是利用聲壓標(biāo)量水聽器及其陣列來實現(xiàn),這時只能獲得聲場的聲壓標(biāo)量信息,不能獲得水質(zhì)點的振速、加速度等聲場的矢量信息。另外,對于小尺寸水下武器平臺(如水雷,深水炸彈等),由于自身空間的限制,聲壓水聽器陣在低頻段很難獲得有效陣增益和波束寬度,繼而影響到其探測距離與定位精度。然而,近年發(fā)展起來的矢量水聽器可藉助單個水聽器或較小的陣列實現(xiàn)水下聲目標(biāo)甚低頻、遠(yuǎn)距離探測與定位,因而倍受國內(nèi)外學(xué)者的關(guān)注。矢量水聽器按拾振工作原理主要分為同振式、聲壓梯度式、動圈式等,雖然它們各自的工作原理不相同,但都有對于聲信號的檢測具有“8”字型余弦指向性的共同特點。MEMS矢量水聽器是近年來新發(fā)展起來的一款微型水聽器,相對于其它矢量水聽器具有小體積、低成本、剛性安裝等優(yōu)勢,非常適合應(yīng)用于水下小尺寸武器平臺。然而,當(dāng)前MEMS矢量水聽器發(fā)展也存在一系列瓶頸問題,如靈敏度低、響應(yīng)頻帶窄、等效本底噪聲聲壓級高、抗流激噪聲差等。本文針對MEMS矢量水聽器所存在的諸多技術(shù)難題開展了一系列攻關(guān)研究。針對前期提出的纖毛式MEMS矢量水聽器聲—電轉(zhuǎn)換微結(jié)構(gòu),建立了相應(yīng)力學(xué)模型,從數(shù)學(xué)上推導(dǎo)出結(jié)構(gòu)應(yīng)力及共振頻率與微結(jié)構(gòu)幾何尺寸之間解析關(guān)系式,依據(jù)公式定性分析出同一種微結(jié)構(gòu)的靈敏度與共振頻率是一對固有矛盾。為解決該矛盾,提出了微結(jié)構(gòu)多重應(yīng)力集中的方法,目的是通過應(yīng)力集中將多種不同微結(jié)構(gòu)的優(yōu)勢折衷集中在一種結(jié)構(gòu)上,得到相對于其中某一微結(jié)構(gòu)既提高靈敏度又拓展頻響帶寬的完美結(jié)果。同時,提出了纖毛集成低密度小球方案,目的是利用低密度小球來增大聲波的接收面積,大幅提高纖毛式MEMS矢量水聽器的靈敏度,同時微結(jié)構(gòu)的共振頻率也不能降低太多。針對以上多重應(yīng)力集中微結(jié)構(gòu)和纖毛集成低密度小球兩種微結(jié)構(gòu)分別建立了有限元流固耦合模型,利用ansys仿真軟件,分析并驗證了兩種結(jié)構(gòu)的可行性。針對本文提出的多重應(yīng)力集中微結(jié)構(gòu),結(jié)構(gòu)形式復(fù)雜且為MEMS非標(biāo)準(zhǔn)加工工藝的難題,開發(fā)出一套完整的MEMS加工工藝流程,重點解決了應(yīng)力槽刻蝕,壓敏電阻布置,歐姆接觸及前后微結(jié)構(gòu)體硅刻蝕等關(guān)鍵工藝。在此基礎(chǔ)上利用L-Edit軟件繪制出光刻掩膜版圖交付加工單位,并成功加工出纖毛式MEMS矢量水聽器芯片。然后,基于專用微系統(tǒng)集成平臺,實現(xiàn)了纖毛與MEMS矢量水聽器芯片的二次集成。針對纖毛式MEMS矢量水聽器芯片應(yīng)用于水中必須解決其絕緣、耐壓、透聲等封裝問題,提出了將纖毛式MEMS矢量水聽器密封于透聲帽(其中透聲帽中充滿絕緣、傳聲介質(zhì)油)的封裝方式和“桔瓣式”支撐結(jié)構(gòu);谟邢拊抡婧驮囼烌炞C相結(jié)合的方法,深入研究透聲帽對纖毛式MEMS矢量水聽器性能的影響。給出了彈性模量越小、厚度越薄的材料制作透聲帽對纖毛式MEMS矢量水聽器靈敏度損失越小的結(jié)論,雖然透聲帽自身的一階固有頻率也會越低,從而造成纖毛式MEMS矢量水聽器整體頻響曲線變化復(fù)雜!敖郯晔健敝谓Y(jié)構(gòu)則可以有效提高透聲帽的一階固有頻率,同時起到防碰撞效果。針對前期纖毛式MEMS矢量水聽器在海試過程中抗流激噪聲差的問題,設(shè)計了微型導(dǎo)流罩,測試表明該微型導(dǎo)流罩雖然對纖毛式MEMS矢量水聽器的靈敏度略有降低(在1kHz以下的低頻最大損失3dB),但對流激噪聲抑制明顯,從而能夠大幅提高纖毛式MEMS矢量水聽器的信噪比。為了減小后續(xù)電路所引起的噪聲,設(shè)計了微弱信號提取電路,測試結(jié)果表明該板級電路噪聲譜級小于-140dB(80Hz以上)。最后,對纖毛式MEMS矢量水聽器的靈敏度,指向性,量程,抗振動等主要性能進(jìn)行了室內(nèi)校準(zhǔn)測試,并完成了新安江湖試和青島海試。測試結(jié)果表明:多重應(yīng)力集中的纖毛式MEMS矢量水聽器相對于前期MEMS矢量水聽器靈敏度提高了6~15dB,頻響范圍由20Hz~500Hz拓展到20Hz~1kHz,等效本底噪聲聲壓級降低了10~25dB。所設(shè)計的微型導(dǎo)流罩,典型環(huán)境試驗和海試結(jié)果表明可以顯著抑制流激噪聲,大幅提高信噪比,為纖毛式MEMS矢量水聽器的工程應(yīng)用奠定了技術(shù)基礎(chǔ)。
[Abstract]:With the development of ship vibration reduction and noise reduction technology, the traditional sonar detection technology is facing unprecedented challenges. The main Navy countries have explored the underwater acoustic target detection based on new effects, new principles and new technologies. At present, underwater target detection means to be realized by using sound pressure scalar hydrophone and its array. At this time, the sound pressure scalar information of the sound field can only be obtained, and the vector information of the sound field, such as the velocity of the water quality point, the acceleration and other sound fields, is not obtained. In addition, for the small size underwater weapon platform (such as mine, deep water bomb, etc.), because of the limitation of its own space, it is difficult to obtain the effective array gain and beam width at the low frequency section of the acoustic pressure hydrophone array, and then influence it. However, the vectorial hydrophone developed in recent years can realize the underwater acoustic target very low frequency, remote detection and location by a single hydrophone or a small array, so it has attracted the attention of the scholars at home and abroad. The principle of vector hydrophone is divided into the same mode, the sound pressure gradient, the moving coil, etc. Their respective working principles are different, but all of them have the common characteristic of "8" type cosine pointing to the sound signal detection. The.MEMS vector hydrophone is a newly developed micro hydrophone in recent years. Compared with other vector hydrophones, it has the advantages of small volume, low cost, rigid installation and so on. It is very suitable for application to underwater small underwater vehicles. However, there are also a series of bottlenecks in the development of the current MEMS vector hydrophone, such as low sensitivity, narrow response frequency band, high sound pressure level equivalent to the background noise, low noise resistance, and so on. In this paper, a series of research and Research on many technical problems existing in MEMS vector hydrophone are carried out. The ciliated MEMS proposed in the previous period is proposed. A corresponding mechanical model is established for the acoustic to electric transformation of a vector hydrophone. The analytical relation between the structural stress and the resonance frequency and the geometrical size of the microstructures is deduced from the mathematical model. The inherent contradiction between the sensitivity and the resonance frequency of the same micro structure is qualitatively analyzed by the formula. The method of stress concentration is aimed at concentrating the advantages of various microstructures on one structure through stress concentration, and the perfect result of increasing sensitivity and bandwidth of frequency response is obtained relative to one of the microstructures. At the same time, the scheme of cilium integrated low density ball is proposed to increase the sound wave by using low density ball. The receiving area can greatly improve the sensitivity of the ciliated MEMS vector hydrophone, and the resonant frequency of the microstructures can not be reduced too much. A finite element fluid solid coupling model is established for the two kinds of microstructures and cilia integrated low density microstructures, and two kinds of junctions are analyzed and verified by using the ANSYS simulation software. In view of the multiple stress concentration micro structure proposed in this paper, the complex structure form and the difficult problem of MEMS non-standard processing technology, a complete set of MEMS processing process is developed, which focuses on the key technologies of stress groove etching, pressure sensitive resistance arrangement, ohm contact and microstructural silicon etching and so on. L-Edit software is used to produce the delivery processing unit of photolithography mask layout, and the ciliated MEMS vector hydrophone chip is successfully machined. Then, the two integration of ciliary and MEMS vector hydrophone chips is realized based on the special microsystem integrated platform. The insulation and pressure resistance of ciliary MEMS vector hydrophone chips must be solved in water. The encapsulation of the ciliary MEMS vector hydrophone is sealed in the sound cap (in which the sound cap is filled with insulation, sound transmission medium oil) and the "orange petal type" support structure. The influence of the sound cap on the performance of the ciliary MEMS vector hydrophone is deeply studied by the combination of finite element simulation and test verification. The smaller the modulus of elasticity and the thinner the thickness of the material, the smaller the sensitivity loss of the ciliary MEMS vector hydrophone, the lower the first natural frequency of the sound cap itself, which causes the change of the whole frequency response curve of the ciliated MEMS vector hydrophone. The first order natural frequency of the high penetration hat has the effect of anti collision. In view of the problem of the difference in the flow resistance of the pre ciliary MEMS vector hydrophone during the sea trial, the miniature guide cover is designed. The test shows that the minitype guide mask has a slight decrease in the sensitivity of the ciliary MEMS vector hydrophone (the maximum low frequency loss below 1kHz). 3dB), but the suppression of the convective noise is obvious, thus the signal to noise ratio of the ciliated MEMS vector hydrophone can be greatly improved. In order to reduce the noise caused by the subsequent circuit, a weak signal extraction circuit is designed. The test results show that the noise level of the board level circuit is less than -140dB (80Hz). Finally, the sensitivity of the ciliated MEMS vector hydrophone, The directivity, the range, the anti vibration and other main performances were tested in the indoor calibration test, and the Xin'an River test and the Qingdao sea test were completed. The test results showed that the sensitivity of the ciliary MEMS vector hydrophone with multiple stress concentration was improved by 6~15dB compared with the earlier MEMS vector hydrophone, the frequency range was extended from 20Hz~500Hz to 20Hz~1kHz, and the equivalent background noise was equivalent. The sound pressure level reduces the miniature guide cover designed by 10~25dB.. The typical environmental test and the sea test results show that the noise can be suppressed significantly and the signal to noise ratio is greatly improved, and the technical basis for the engineering application of the ciliary MEMS vector hydrophone is laid.
【學(xué)位授予單位】:西北工業(yè)大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2015
【分類號】:TB565.1
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 時勝國,楊德森;矢量水聽器的源定向理論及其定向誤差分析[J];哈爾濱工程大學(xué)學(xué)報;2003年02期
2 孟洪,周利生,惠俊英;組合矢量水聽器及其成陣技術(shù)研究[J];聲學(xué)與電子工程;2003年01期
3 陳洪娟;楊士莪;王智元;洪連進(jìn);;中頻小型矢量水聽器設(shè)計研究[J];應(yīng)用聲學(xué);2006年06期
4 陳麗潔;楊士莪;;矢量水聽器測試模型及拾振條件探討[J];應(yīng)用聲學(xué);2006年06期
5 喬慧;劉俊;張斌珍;張文棟;熊繼軍;薛晨陽;;一種新型壓阻式硅微仿生矢量水聽器的設(shè)計[J];傳感技術(shù)學(xué)報;2008年02期
6 彭漢書;李風(fēng)華;;由矢量水聽器陣列反演淺海地聲參數(shù)[J];聲學(xué)技術(shù);2008年02期
7 賈志富;;全面感知水聲信息的新傳感器技術(shù)——矢量水聽器及其應(yīng)用[J];物理;2009年03期
8 關(guān)凌綱;張國軍;薛晨陽;藍(lán)偉軍;;三維同振柱型矢量水聽器的制作[J];艦船科學(xué)技術(shù);2009年09期
9 徐余;孫好廣;;矢量水聽器振子實現(xiàn)研究[J];聲學(xué)與電子工程;2010年02期
10 王立;劉文怡;張國軍;;仿生矢量水聽器水下監(jiān)測記錄裝置[J];計算機(jī)測量與控制;2011年01期
相關(guān)會議論文 前10條
1 陳洪娟;張虎;趙勰;;三維同振球形矢量水聽器的小型化研究[A];2009年全國水聲學(xué)學(xué)術(shù)交流暨水聲學(xué)分會換屆改選會議論文集[C];2009年
2 孫梅;李風(fēng)華;;一種矢量水聽器俯仰姿態(tài)校正方法研究[A];中國聲學(xué)學(xué)會2009年青年學(xué)術(shù)會議[CYCA’09]論文集[C];2009年
3 許欣然;葛輝良;孟洪;白琳瑯;鄭震宇;;矢量水聽器聲性能的理論建模分析[A];2009年中國東西部聲學(xué)學(xué)術(shù)交流會論文集[C];2009年
4 高源;杜選民;;單個矢量水聽器空間處理增益分析[A];2004年全國水聲學(xué)學(xué)術(shù)會議論文集[C];2004年
5 熊水東;羅洪;胡永明;倪明;孟洲;;三維光纖矢量水聽器實驗研究[A];中國聲學(xué)學(xué)會2005年青年學(xué)術(shù)會議[CYCA'05]論文集[C];2005年
6 胡永明;倪明;孟洲;熊水東;;光纖矢量水聽器研究進(jìn)展[A];中國聲學(xué)學(xué)會2006年全國聲學(xué)學(xué)術(shù)會議論文集[C];2006年
7 馬莉;;基于矢量水聽器的目標(biāo)定向技術(shù)研究[A];湖北省聲學(xué)學(xué)會成立二十周年紀(jì)念文集[C];2006年
8 李風(fēng)華;彭漢書;;矢量水聽器陣列反演淺海地聲參數(shù)[A];2007年全國水聲學(xué)學(xué)術(shù)會議論文集[C];2007年
9 費(fèi)騰;;矢量水聽器校準(zhǔn)裝置[A];2005年全國水聲學(xué)學(xué)術(shù)會議論文集[C];2005年
10 陳洪娟;趙鵬濤;;10~100Hz矢量水聽器校準(zhǔn)系統(tǒng)研究[A];2008年全國聲學(xué)學(xué)術(shù)會議論文集[C];2008年
相關(guān)重要報紙文章 前1條
1 唐曉偉 記者 姜雪松;冰城聲吶技術(shù)裝備造就“水下千里眼”[N];哈爾濱日報;2013年
相關(guān)博士學(xué)位論文 前10條
1 陳麗潔;微型矢量水聽器研究[D];哈爾濱工程大學(xué);2006年
2 莫世奇;矢量水聽器的數(shù)據(jù)融合研究[D];哈爾濱工程大學(xué);2007年
3 張國軍;纖毛式MEMS矢量水聽器研究[D];西北工業(yè)大學(xué);2015年
4 李思純;基于矢量水聽器的目標(biāo)特征提取與識別技術(shù)研究[D];哈爾濱工程大學(xué);2008年
5 呂文磊;壓差式光纖矢量水聽器基元與測試技術(shù)研究[D];哈爾濱工程大學(xué);2009年
6 呂云飛;甚低頻矢量水聽器潛標(biāo)探測系統(tǒng)關(guān)鍵技術(shù)研究[D];哈爾濱工程大學(xué);2010年
7 時勝國;矢量水聽器及其在平臺上的應(yīng)用研究[D];哈爾濱工程大學(xué);2007年
8 吳艷群;拖線陣用光纖矢量水聽器關(guān)鍵技術(shù)研究[D];國防科學(xué)技術(shù)大學(xué);2011年
9 陳宇中;開環(huán)光纖陀螺性能改進(jìn)及其在光纖矢量水聽器姿態(tài)測量上的應(yīng)用研究[D];國防科學(xué)技術(shù)大學(xué);2011年
10 饒偉;光纖矢量水聽器海底地層結(jié)構(gòu)高分辨率探測關(guān)鍵技術(shù)研究[D];國防科學(xué)技術(shù)大學(xué);2012年
相關(guān)碩士學(xué)位論文 前10條
1 武甜甜;三維壓電矢量水聽器小型化的研究[D];哈爾濱工程大學(xué);2009年
2 邢世文;三維矢量水聽器及其成陣研究[D];哈爾濱工程大學(xué);2009年
3 李金亮;三軸向電容式矢量水聽器的研究[D];哈爾濱工程大學(xué);2009年
4 袁林;矢量水聽器智能化技術(shù)研究[D];哈爾濱工程大學(xué);2008年
5 趙鵬濤;10-100Hz矢量水聽器研制及其測試方法研究[D];哈爾濱工程大學(xué);2008年
6 趙勰;三維矢量水聽器及其低頻校準(zhǔn)方法的研究[D];哈爾濱工程大學(xué);2009年
7 楊松濤;深水矢量水聽器的研制[D];哈爾濱工程大學(xué);2010年
8 邢建軍;矢量水聽器測向技術(shù)的研究[D];西北工業(yè)大學(xué);2005年
9 周益明;二維同振柱形矢量水聽器的研究[D];哈爾濱工程大學(xué);2006年
10 吳祥興;超低頻矢量水聽器技術(shù)研究[D];哈爾濱工程大學(xué);2005年
,本文編號:1913170
本文鏈接:http://sikaile.net/guanlilunwen/gongchengguanli/1913170.html