需求不確定環(huán)境下可調(diào)整產(chǎn)能的混流裝配線(xiàn)平衡研究
本文選題:混流裝配線(xiàn) + 裝配線(xiàn)平衡; 參考:《西安交通大學(xué)》2017年博士論文
【摘要】:混流裝配線(xiàn)(以下簡(jiǎn)稱(chēng)混裝線(xiàn))能同時(shí)裝配多種型號(hào)的產(chǎn)品,因此被廣泛的應(yīng)用于汽車(chē)、家電和消費(fèi)電子等行業(yè),以滿(mǎn)足多樣化的顧客需求。裝配線(xiàn)平衡是產(chǎn)線(xiàn)設(shè)計(jì)的核心決策,它決定各工作臺(tái)的任務(wù)分配,直接影響裝配線(xiàn)的效率和成本。此問(wèn)題有超過(guò)50年的研究歷史,現(xiàn)有研究中幾乎都是按固定產(chǎn)能,或者說(shuō)按預(yù)計(jì)的生產(chǎn)需求來(lái)設(shè)計(jì)裝配線(xiàn)的。然而在實(shí)際中,為應(yīng)對(duì)瞬息萬(wàn)變的市場(chǎng)需求,企業(yè)經(jīng)常需要調(diào)整生產(chǎn)計(jì)劃,改變裝配線(xiàn)的生產(chǎn)任務(wù)。當(dāng)實(shí)際的生產(chǎn)需求偏離設(shè)計(jì)值時(shí),裝配線(xiàn)可能無(wú)法達(dá)到設(shè)計(jì)的生產(chǎn)效率,偏離較大時(shí),可能還須進(jìn)行相應(yīng)的調(diào)整措施(例如加班,臨時(shí)工等)才能滿(mǎn)足生產(chǎn)需求。調(diào)整發(fā)生的頻率和產(chǎn)生的額外成本受到需求波動(dòng)的程度和初始平衡方案的影響,但是這些因素在現(xiàn)有平衡研究中極少考慮,從而導(dǎo)致生產(chǎn)成本的低估。為彌補(bǔ)這種缺陷,本文研究了不確定環(huán)境下的混裝線(xiàn)平衡問(wèn)題,混裝線(xiàn)可以采取一些產(chǎn)能調(diào)整措施以應(yīng)對(duì)需求的變化。通過(guò)在平衡階段就考慮后續(xù)產(chǎn)能調(diào)整的便利性和成本,可以降低在產(chǎn)線(xiàn)在不確定需求環(huán)境中長(zhǎng)期運(yùn)行的平均成本。本文討論了三種產(chǎn)能調(diào)整措施,針對(duì)不同的措施分別研究了相應(yīng)的產(chǎn)線(xiàn)平衡問(wèn)題,主要工作和創(chuàng)新點(diǎn)歸納如下:1.研究了使用備用多能工調(diào)整產(chǎn)能的混裝線(xiàn)平衡問(wèn)題。使用多能工是應(yīng)對(duì)工作臺(tái)負(fù)荷過(guò)載最常用的方法之一,在企業(yè)實(shí)踐中也很常見(jiàn)。許多混裝線(xiàn)排序問(wèn)題的研究已討論了這種方法,但還沒(méi)有研究討論它對(duì)混裝線(xiàn)平衡的影響。備用多能工扮演一個(gè)產(chǎn)能緩沖池的作用,他們平時(shí)只少量或不參與裝配作業(yè),當(dāng)有工作臺(tái)發(fā)生負(fù)荷過(guò)載時(shí)他們才去協(xié)助裝配。與普通工人不同的是,多能工能幫助多個(gè)工作臺(tái),工資更貴。決策者需要決定裝配線(xiàn)使用的普通工人和備用多能工的數(shù)量、以及各工作臺(tái)的任務(wù)分配,以滿(mǎn)足任意情境的生產(chǎn)需求。本文以最小化總?cè)斯こ杀緸槟繕?biāo)建立了該問(wèn)題的數(shù)學(xué)模型,根據(jù)問(wèn)題特點(diǎn),提出了一種遞歸算法計(jì)算給定普通工人數(shù)量時(shí)過(guò)載工作量的下界。在此基礎(chǔ)上,給出了全局成本下界的估計(jì)方法。本文提出了一種啟發(fā)式算法快速尋找近似最優(yōu)解,并以此為上界,設(shè)計(jì)了分支定界與記憶(BBR)算法精確求解該問(wèn)題。本文基于SALBP-1標(biāo)準(zhǔn)算例庫(kù)(http://alb.mansci.de/)隨機(jī)生成了500個(gè)算例以驗(yàn)證算法有效性,計(jì)算實(shí)驗(yàn)表明,算法能在60秒內(nèi)獲得并驗(yàn)證其中406個(gè)問(wèn)題的最優(yōu)解,對(duì)未能驗(yàn)證最優(yōu)性的94個(gè)算例,獲得的解距離下界的平均偏差為5.17%。數(shù)值實(shí)驗(yàn)還比較了固定產(chǎn)能和允許產(chǎn)能調(diào)整的成本,結(jié)果表明使用備用多能工能夠?qū)崿F(xiàn)平均幅度為5%左右的成本改善,但多能工難以隨時(shí)雇傭的特點(diǎn)限制了這種方法的適用范圍,只有小部分具備特定特征的算例會(huì)采用這種產(chǎn)能調(diào)整方法。2.研究了通過(guò)加班調(diào)整產(chǎn)能的混裝線(xiàn)平衡問(wèn)題。加班是企業(yè)實(shí)踐中最常用的臨時(shí)改變產(chǎn)能的方法,但還沒(méi)有研究考慮允許加班對(duì)混裝線(xiàn)平衡方案的影響。加班獲得的額外勞動(dòng)時(shí)間可臨時(shí)提高混裝線(xiàn)的生產(chǎn)能力,但加班需要支付更高的工資,且最大加班時(shí)間受法律限制。決策者需要決定使用的工作臺(tái)數(shù)量、各工作臺(tái)的任務(wù)分配和各情境下的加班時(shí)間,以滿(mǎn)足每個(gè)情境的需求,并最小化平均每天需支付的總工資。本文建立了該問(wèn)題的數(shù)學(xué)模型,分析了問(wèn)題的若干性質(zhì),提出了計(jì)算全局成本下界的迭代算法。之后,利用下界計(jì)算方法,提出了啟發(fā)式算法和BBR算法來(lái)求解本問(wèn)題。對(duì)500個(gè)算例的計(jì)算實(shí)驗(yàn)表明,BBR算法能在60秒內(nèi)精確求解其中408個(gè),對(duì)未能獲得最優(yōu)的92個(gè)算例,獲得的解離下界的平均偏差為2.67%。數(shù)值實(shí)驗(yàn)還比較了固定產(chǎn)能和允許產(chǎn)能調(diào)整的成本,結(jié)果表明,絕大多數(shù)算例都能夠通過(guò)加班實(shí)現(xiàn)較明顯的成本改善,平均改善幅度隨著需求波動(dòng)程度增大而增大,但即便需求變化不超過(guò)20%,成本改善的幅度也超過(guò)9%。3.研究了通過(guò)增減工人數(shù)量調(diào)節(jié)產(chǎn)能的混裝線(xiàn)平衡問(wèn)題。Simaria等(2009)[3]研究了U型線(xiàn)常見(jiàn)的一種產(chǎn)能調(diào)節(jié)方法:不移動(dòng)設(shè)備位置,通過(guò)改變工人數(shù)量和每個(gè)人的任務(wù)分配來(lái)應(yīng)對(duì)需求的變化。本文討論了這種方法在直線(xiàn)型混裝線(xiàn)中應(yīng)用:保持任務(wù)順序不變,通過(guò)重新劃分工作臺(tái)邊界的方式改變工作臺(tái)數(shù)量。決策者需要決定任務(wù)順序和各情境的工作臺(tái)劃分,以減少各情境使用的工作臺(tái)數(shù)量的平均值。本文對(duì)此問(wèn)題建立了數(shù)學(xué)模型。分析了給定序列下最優(yōu)工作臺(tái)劃分的性質(zhì),給出了下界的計(jì)算方法,然后提出了基于位置交換的局部?jī)?yōu)化方法,并將之嵌入到單程啟發(fā)式算法中,最后提出了BBR精確算法。對(duì)500個(gè)算例的計(jì)算實(shí)驗(yàn)表明,BBR算法獲得了308個(gè)問(wèn)題的精確最優(yōu)解,192個(gè)未驗(yàn)證算例與成本下界的平均偏差為4.05%。數(shù)值實(shí)驗(yàn)還比較了固定產(chǎn)能和允許產(chǎn)能調(diào)整的成本,結(jié)果表明,絕大多數(shù)算例都能夠通過(guò)通過(guò)增減工作臺(tái)數(shù)量減少所需人工成本,成本改善幅度隨著需求波動(dòng)程度增大而增大。當(dāng)需求波動(dòng)超過(guò)50%時(shí),這種方法能實(shí)現(xiàn)比前兩種方法更明顯的成本改善;即便需求變化不超過(guò)20%,成本改善的幅度也超過(guò)7%。
[Abstract]:Mixed assembly line (hereinafter referred to as mixed line) can assemble a variety of types of products at the same time, so it is widely used in automotive, household electrical appliances and consumer electronics industries to meet the diverse needs of customers. Assembly line balance is the core decision of line production design. It determines the assignment of tasks in each workbench and directly affects the efficiency and cost of the assembly line. This problem has more than 50 years of research history. In the current research, assembly lines are designed in terms of fixed capacity or expected production demand. In practice, in order to cope with the fast changing market demand, enterprises often need to adjust production plans and change the production tasks of assembly lines. When actual production demand deviates from the design. At the time of value, the assembly line may not be able to achieve the production efficiency of the design. When the deviation is large, the corresponding adjustment measures (such as overtime, temporary workers, etc.) will be required to meet the production needs. The frequency and the additional cost of the adjustment are affected by the degree of demand fluctuation and the initial balance scheme, but these factors are in the current balance. In order to make up for this defect, this paper studies the problem of the mixing line balance in the uncertain environment. The mixed line can take some capacity adjustment measures to cope with the change of demand. The average cost of long-term operation in the uncertain demand environment. Three kinds of capacity adjustment measures are discussed in this paper. According to different measures, the corresponding balance problem of line production is studied. The main work and innovation points are summarized as follows: 1. the problem of mixing line balance using standby multi energy adjusts the productivity is studied. The use of multi energy is to deal with the workbench. One of the most commonly used methods of load overload is also common in enterprise practice. Many research on mixed line sorting problems have been discussed, but there is no study and discussion of its impact on the balance of the mixed line. Standby multiplayer plays a role of a capacity buffer pool, they usually only have little or no participation in assembly operations, when there is a worktable. Unlike ordinary workers, they can help multiple workstations to be more expensive. Decision makers need to determine the number of ordinary workers and spare multiple workers used on the assembly line, and the assignment of tasks in each workbench to meet the production requirements of the task situation. This article minimizes the total labor force. On the basis of the characteristics of the problem, a mathematical model of the problem is set up. Based on the characteristics of the problem, a recursive algorithm is proposed to calculate the lower bound of the overload workload for a given number of ordinary workers. On this basis, the estimation method of the global cost lower bound is given. In this paper, the branch and bound and memory (BBR) algorithm is considered to solve the problem accurately. Based on the SALBP-1 standard example library (http://alb.mansci.de/), 500 examples are randomly generated to verify the effectiveness of the algorithm. The calculation experiments show that the algorithm can obtain and verify the optimal solution of 406 of the 406 problems within 60 seconds, and obtain 94 examples of the failure to verify the optimality. The average deviation of the lower bounds of the solution distance is the 5.17%. numerical experiment, which also compares the cost of the fixed capacity and the allowable capacity adjustment. The result shows that the cost improvement of the average amplitude is about 5% by using the spare multi energy worker, but the characteristics of the multi energy workers' difficult to employ at any time limit the scope of the application of this method, only a small part has specific special characteristics. This capacity adjustment method,.2., is used to study the problem of mixing line balance by overtime adjustment. Overtime is the most commonly used method of temporary change in capacity in enterprise practice, but there is no study to consider the effect of overtime on the mixed line balance scheme. Extra working hours obtained by overtime can temporarily increase the mix line. The production capacity, but overtime pay higher wages, and the maximum overtime time is limited by the law. Decision makers need to determine the number of workstations used, the assignment of the workstations and the overtime hours in each situation to meet the needs of each situation and minimize the average daily wages to be paid. This paper establishes the problem. In the mathematical model, we analyze some properties of the problem and propose an iterative algorithm for calculating the lower bound of global cost. After that, the heuristic algorithm and BBR algorithm are proposed to solve the problem by using the lower bound calculation method. The calculation experiments of 500 examples show that the BBR algorithm can solve 408 of them in 60 seconds, and for the failure to obtain the optimal calculation. For example, the average deviation of the dissociation lower bounds obtained by the 2.67%. numerical experiment also compares the cost of the fixed capacity and the allowable capacity adjustment. The results show that most of the examples can achieve a more obvious cost improvement through overtime, and the average improvement increases with the increase of demand volatility, but even if the demand change does not exceed 20%, the cost can be changed. The extent of the improvement is also more than 9%.3.'s study of the mixed line balance problem (.Simaria) that regulates the productivity by increasing the number of workers. (2009) [3] has studied a common method of capacity adjustment for the U line: the position of the non mobile equipment, the change in the demand by changing the number of workers and the assignment of each person. This method is discussed in this paper. The application of line type mixing line: keeping the order of the task constant and changing the number of worktable by redividing the boundary of the worktable. The decision maker needs to determine the task order and the worktable division of each situation so as to reduce the average number of the worktable used in each situation. This paper establishes a mathematical model for this question and analyzes the given sequence. The nature of the optimal table division gives the calculation method of the lower bound, then puts forward the local optimization method based on the position exchange, and embeds it into the single path heuristic algorithm, and finally puts forward the exact BBR algorithm. The calculation experiments of the 500 examples show that the BBR algorithm obtains the exact optimal solution of the 308 problems and 192 unverified examples. The average deviation from the lower bound of the cost is the 4.05%. numerical experiment that also compares the cost of fixed capacity and allowable capacity adjustment. The results show that most of the examples can reduce the labor cost by reducing the number of worktables, and the cost improvement increases with the increase of demand volatility. The method can achieve more obvious cost improvement than the first two methods. Even if the demand change is not more than 20%, the cost improvement will exceed 7%.
【學(xué)位授予單位】:西安交通大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2017
【分類(lèi)號(hào)】:TB497
【相似文獻(xiàn)】
相關(guān)期刊論文 前7條
1 陳淮莉;李丹妮;鄭建華;;大規(guī)模定制型企業(yè)需求不確定下訂單優(yōu)化配置[J];上海海事大學(xué)學(xué)報(bào);2013年04期
2 王國(guó)利;胡丹丹;楊超;;需求和供應(yīng)不確定下的選址研究[J];工業(yè)工程與管理;2011年01期
3 李小翠;張玉林;;顧客策略行為與貝葉斯需求學(xué)習(xí)下的易逝品定價(jià)[J];東南大學(xué)學(xué)報(bào)(自然科學(xué)版);2012年05期
4 何勇,楊德禮,何炬,張醒洲;具有隨機(jī)市場(chǎng)需求的退貨政策模型研究[J];大連理工大學(xué)學(xué)報(bào);2005年05期
5 鄧寧;羅榮桂;;需求不確定性下勞動(dòng)力資源的柔性調(diào)度[J];武漢理工大學(xué)學(xué)報(bào);2006年03期
6 李善梅;徐肖豪;王飛;;基于需求不確定性的機(jī)場(chǎng)擁擠風(fēng)險(xiǎn)預(yù)測(cè)模型與方法[J];西南交通大學(xué)學(xué)報(bào);2013年01期
7 ;[J];;年期
相關(guān)會(huì)議論文 前1條
1 陳劍;劉運(yùn)輝;宋西平;;需求不確定性條件下逢低買(mǎi)入網(wǎng)上拍賣(mài)中買(mǎi)方策略的研究[A];Well-off Society Strategies and Systems Engineering--Proceedings of the 13th Annual Conference of System Engineering Society of China[C];2004年
相關(guān)重要報(bào)紙文章 前7條
1 王蓁;做好“需求不確定”下的理想補(bǔ)給[N];中國(guó)商報(bào);2004年
2 中國(guó)經(jīng)濟(jì)導(dǎo)報(bào)記者 劉寶亮;“擴(kuò)需求控產(chǎn)能”成中國(guó)經(jīng)濟(jì)當(dāng)務(wù)之急[N];中國(guó)經(jīng)濟(jì)導(dǎo)報(bào);2013年
3 潘利軍 銀河期貨 王明義;分歧漸增 領(lǐng)跌滬鋅何去何從?[N];期貨日?qǐng)?bào);2010年
4 張效;第二季度小尺寸面板需求不確定性增高 臺(tái)面板廠轉(zhuǎn)趨保守[N];電子資訊時(shí)報(bào);2008年
5 本報(bào)記者 周冬梅;別揪著庫(kù)存不放![N];中國(guó)紡織報(bào);2012年
6 證券時(shí)報(bào)記者 張珈;上市公司各出奇招應(yīng)對(duì)三重挑戰(zhàn)[N];證券時(shí)報(bào);2010年
7 商福民;明年進(jìn)出口有望恢復(fù)性增長(zhǎng)[N];中國(guó)工業(yè)報(bào);2009年
相關(guān)博士學(xué)位論文 前5條
1 李金霖;需求不確定環(huán)境下可調(diào)整產(chǎn)能的混流裝配線(xiàn)平衡研究[D];西安交通大學(xué);2017年
2 易東波;基于不確定性時(shí)變需求的動(dòng)態(tài)批量決策研究[D];華中科技大學(xué);2012年
3 王容;需求不確定性下移動(dòng)通信消費(fèi)者行為研究[D];電子科技大學(xué);2012年
4 王娟麗;基于QFD的概念設(shè)計(jì)方法研究[D];浙江大學(xué);2011年
5 黃洋;考慮風(fēng)險(xiǎn)的雙源供應(yīng)模式管理研究[D];華中科技大學(xué);2011年
相關(guān)碩士學(xué)位論文 前10條
1 李贏麗;供應(yīng)與需求風(fēng)險(xiǎn)下供應(yīng)鏈協(xié)調(diào)機(jī)制研究[D];上海交通大學(xué);2012年
2 陳智云;H電梯成品倉(cāng)儲(chǔ)管理改善研究[D];華南理工大學(xué);2015年
3 馬樂(lè);顧客需求突變判斷及最優(yōu)訂購(gòu)策略研究[D];東南大學(xué);2015年
4 李理;以客戶(hù)需求為導(dǎo)向的產(chǎn)品化軟件管理研究[D];復(fù)旦大學(xué);2009年
5 沈璇;需求不確定性下的三級(jí)庫(kù)存魯棒控制模型研究[D];南京航空航天大學(xué);2009年
6 蘇良蒙;不確定性需求下供應(yīng)鏈庫(kù)存管理策略[D];南京理工大學(xué);2009年
7 汪中;用戶(hù)互動(dòng)、需求不確定性、人員沖突與軟件項(xiàng)目績(jī)效關(guān)系研究[D];浙江大學(xué);2006年
8 劉靜;貝葉斯預(yù)測(cè)下需求連續(xù)的采購(gòu)策略研究[D];南京理工大學(xué);2010年
9 呂國(guó)華;P公司面向個(gè)性化需求的運(yùn)營(yíng)模式變革及實(shí)施過(guò)程研究[D];上海交通大學(xué);2009年
10 陳婷;基于需求擾動(dòng)的供應(yīng)鏈協(xié)調(diào)[D];廈門(mén)大學(xué);2009年
,本文編號(hào):1911009
本文鏈接:http://sikaile.net/guanlilunwen/gongchengguanli/1911009.html