天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁(yè) > 管理論文 > 工程管理論文 >

雙罐式氣泵供液制冷系統(tǒng)的理論與實(shí)驗(yàn)研究

發(fā)布時(shí)間:2018-05-17 19:41

  本文選題:氣泵供液 + 傳熱效率 ; 參考:《天津商業(yè)大學(xué)》2014年碩士論文


【摘要】:隨著現(xiàn)代社會(huì)中各種科學(xué)技術(shù)的不斷發(fā)展,制冷和冷藏作為科學(xué)技術(shù)發(fā)展的重要學(xué)科之一,無(wú)論是工業(yè)生產(chǎn)還是民用生活科技等眾多領(lǐng)域都得到廣泛使用;因此制冷系統(tǒng)節(jié)能的研究和高性能系統(tǒng)的研制和開(kāi)發(fā)就成為制冷領(lǐng)域探索的核心課題。 提高蒸發(fā)器傳熱效率的主要途徑在于增大蒸發(fā)器管路空氣側(cè)放熱系數(shù)和制冷劑側(cè)放熱系數(shù),蒸發(fā)器管空氣側(cè)采用高效翅片或者強(qiáng)化空氣流動(dòng)速度后可以有效提高空氣側(cè)傳熱系數(shù),但并不能無(wú)限提高。過(guò)度強(qiáng)化空氣流動(dòng),會(huì)帶來(lái)冷藏物品的干耗等問(wèn)題,同時(shí)也增加了風(fēng)機(jī)電能和蒸發(fā)器的負(fù)荷。因此提高制冷機(jī)側(cè)制冷系數(shù)便成為了一條節(jié)能高效的蹊徑。提高制冷劑流速是增大制冷劑側(cè)放熱系數(shù)的主要方式,相對(duì)于傳統(tǒng)直接膨脹供液方式,由于制冷系統(tǒng)中壓縮機(jī)的穩(wěn)定運(yùn)行控制制冷劑的循環(huán)量,蒸發(fā)器的供液量與蒸發(fā)量基本相等,難以調(diào)節(jié)。因此利用氣泵供液裝置提高蒸發(fā)器中制冷劑供液量,使其大于蒸發(fā)量來(lái)實(shí)現(xiàn)提高制冷劑流速?gòu)?qiáng)化傳熱性能,實(shí)現(xiàn)蒸發(fā)器的超倍供液,增大液態(tài)制冷劑和蒸發(fā)管內(nèi)壁的接觸面積,提高蒸發(fā)器傳熱效率[1 2]。 搭建氣泵供液制冷系統(tǒng)實(shí)驗(yàn)臺(tái),設(shè)計(jì)氣泵供液控制裝置電氣線路圖,控制整個(gè)氣泵雙桶連續(xù)供液穩(wěn)定。采用熱平衡法檢驗(yàn)系統(tǒng)在不同供液量下的運(yùn)行特性,并驗(yàn)證傳熱效果。 實(shí)驗(yàn)中調(diào)節(jié)供液氣壓來(lái)控制再循環(huán)蒸發(fā)器供液量,調(diào)節(jié)制冷系統(tǒng)中的循環(huán)倍率,在循環(huán)倍率隨著供液氣壓的增加而逐漸增大時(shí),蒸發(fā)器的傳熱量會(huì)升至最大值。在不同的工況條件下測(cè)定制冷系統(tǒng)的壓力、溫度和制冷量等技術(shù)參數(shù),得出氣泵供液方式與直接膨脹供液方式的系統(tǒng)性能差異(如傳熱系數(shù)、制冷量和系統(tǒng)COP)以及變化規(guī)律。
[Abstract]:With the continuous development of science and technology in modern society, refrigeration and refrigeration as one of the important disciplines of science and technology development, whether industrial production or civil life science and technology and many other fields have been widely used. Therefore, the research on energy saving of refrigeration system and the research and development of high performance system have become the core subject in refrigeration field. The main way to improve the heat transfer efficiency of evaporator is to increase the air side heat release coefficient and refrigerant side heat release coefficient of evaporator. The heat transfer coefficient of the air side of the evaporator tube can be improved effectively by using high efficiency fin or enhanced air flow velocity, but it can not be increased indefinitely. Excessive enhancement of air flow will cause dry consumption of refrigerated items and increase fan power and evaporator load. Therefore, improving the refrigeration coefficient on the side of the refrigerator has become a path of energy saving and high efficiency. Increasing the flow rate of refrigerant is the main way to increase the exothermic coefficient of refrigerant side. Compared with the traditional way of direct expansion and liquid supply, the stable operation of compressor in refrigeration system controls the circulation of refrigerant. The amount of liquid supplied by evaporator is basically equal to that of evaporator, so it is difficult to adjust. Therefore, the liquid supply of refrigerant in evaporator can be increased by using the device of gas pump to increase the refrigerant flow rate and enhance the heat transfer performance of evaporator, to increase the contact area between liquid refrigerant and the inner wall of evaporator, and to improve the heat transfer performance of refrigerant flow rate, so as to increase the contact area between liquid refrigerant and the inner wall of evaporator tube. Improve the heat transfer efficiency of evaporator [1 / 2]. The experiment platform of air pump liquid supply refrigeration system was built, and the electric circuit diagram of the gas pump liquid supply control device was designed to control the continuous liquid supply stability of the whole gas pump. The heat balance method was used to test the operating characteristics of the system under different liquid supply and to verify the heat transfer effect. In the experiment, adjusting the air pressure to control the liquid supply of the recirculating evaporator and regulating the circulation rate in the refrigeration system, the heat transfer rate of the evaporator will rise to the maximum when the circulation rate increases with the increase of the supply pressure. The pressure, temperature and refrigerating capacity of the refrigeration system are measured under different operating conditions. The system performance differences (such as heat transfer coefficient, refrigerating capacity and system COP) between the liquid supply mode of the gas pump and the direct expansion liquid supply mode are obtained as well as the variation law.
【學(xué)位授予單位】:天津商業(yè)大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2014
【分類號(hào)】:TB657

【相似文獻(xiàn)】

相關(guān)期刊論文 前10條

1 張又清;制冷系統(tǒng)中保持恒溫調(diào)定的新方法[J];家用電器;2001年12期

2 朱瑞琪,謝家澤,吳業(yè)正;制冷系統(tǒng)的綜合優(yōu)化控制模型[J];西安交通大學(xué)學(xué)報(bào);2002年05期

3 田長(zhǎng)青,竇春鵬,楊新江,石文星,彥啟森;制冷系統(tǒng)的穩(wěn)定性[J];流體機(jī)械;2002年04期

4 林新隊(duì);R_(12)制冷系統(tǒng)改用R_(134a)的操作方法[J];咸寧師專學(xué)報(bào);2002年03期

5 童蕾;基于綠色設(shè)計(jì)思想之冰箱制冷系統(tǒng)研發(fā)的探討[J];輕工機(jī)械;2005年02期

6 寧?kù)o紅;;超市制冷系統(tǒng)與未來(lái)發(fā)展[J];家電科技;2006年02期

7 莊友明;王洪健;;泵供液制冷系統(tǒng)低溫管道保溫厚度的優(yōu)化[J];低溫工程;2007年06期

8 李兆堅(jiān);;某大型低溫環(huán)境室制冷系統(tǒng)設(shè)計(jì)[J];暖通空調(diào);2009年02期

9 席旺才;;丙烯制冷系統(tǒng)的改造[J];中氮肥;2011年02期

10 王東芳;吳玉庭;楊娟娟;劉績(jī)偉;馬重芳;;微型制冷系統(tǒng)性能試驗(yàn)研究[J];工程熱物理學(xué)報(bào);2011年05期

相關(guān)會(huì)議論文 前10條

1 寧?kù)o紅;李惠宇;彭苗;;超市制冷系統(tǒng)的分析比較與未來(lái)發(fā)展[A];第3屆中國(guó)食品冷藏鏈新設(shè)備、新技術(shù)論壇論文集[C];2007年

2 田琦;楊凡;;太陽(yáng)能?chē)娚洹獕嚎s二級(jí)制冷系統(tǒng)的,

本文編號(hào):1902606


資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/guanlilunwen/gongchengguanli/1902606.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶b8b63***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com