基于IBAD路線制備YBCO超導(dǎo)帶材緩沖層的研究
本文選題:YBCO超導(dǎo)帶材 + 離子束輔助沉積 ; 參考:《電子科技大學(xué)》2016年博士論文
【摘要】:YBa2Cu3O7-x(YBCO)高溫超導(dǎo)帶材具有優(yōu)異的電學(xué)性能,在輸電線纜、強(qiáng)磁體、電動(dòng)機(jī)、限流器等領(lǐng)域有廣闊的應(yīng)用前景。為了獲得高性能的YBCO超導(dǎo)帶材,必須制備出高質(zhì)量的緩沖層來為YBCO提供生長襯底。目前,緩沖層的制備過程中仍存在一些關(guān)鍵問題需要解決:如高質(zhì)量的雙軸織構(gòu)、高的制備成本和緩沖層的均勻性等。因此,本論文致力于在金屬基底上制備低成本、高質(zhì)量、良好均勻性的緩沖層,主要內(nèi)容如下:1、自主設(shè)計(jì)了低成本的溶液沉積平坦化(SDP)系統(tǒng),利用該系統(tǒng)在哈氏合金(Hastelloy C276)基底表面制備Y_2O_3非晶薄膜,研究了熱處理溫度和涂覆層數(shù)對非晶薄膜的表面形貌和結(jié)晶性的影響,成功制備出5μm′5μm范圍內(nèi)表面均方根粗糙度(RMS)僅為0.2 nm的非晶薄膜,為IBAD-Mg O的生長提供了良好的襯底,然而Y_2O_3薄膜在熱處理過程中可能出現(xiàn)結(jié)晶現(xiàn)象,并且在后續(xù)La Mn O3(LMO)模板層制備過程中,Y_2O_3會(huì)出現(xiàn)重結(jié)晶的現(xiàn)象。因此,本實(shí)驗(yàn)室在Y_2O_3薄膜中摻雜Al_2O_3來提高非晶薄膜的結(jié)晶溫度,相比于Y_2O_3(500°C),Y_2O_3-Al_2O_3(YAl O)的熱穩(wěn)定性更高,最優(yōu)化熱處理溫度范圍更寬(480~540°C),在后續(xù)LMO層制備過程中沒有出現(xiàn)重結(jié)晶現(xiàn)象。2、利用離子束輔助沉積(IBAD)技術(shù)在非晶薄膜表面制備Mg O織構(gòu)層,在短樣上成功制備出面外半高寬((35)w)2.4°左右,面內(nèi)半高寬((35)(37))3.7°左右的Epi-Mg O/IBAD-Mg O薄膜。利用高能電子衍射儀(RHEED)實(shí)時(shí)監(jiān)測IBAD-Mg O的雙軸織構(gòu)演化過程,發(fā)現(xiàn)雙軸織構(gòu)在形核階段突然形成(薄膜厚度大約為2.2 nm)。R.T.Brewer等人提出的小島級(jí)聯(lián)理論能夠解釋IBAD-Mg O雙軸織構(gòu)形成的過程,基于該理論,利用一種兩步法來加速IBAD-Mg O的雙軸織構(gòu)形成過程,使IBAD-Mg O在厚度僅為0.5 nm時(shí)便能獲得雙軸織構(gòu)。利用自外延技術(shù)在IBAD-Mg O襯底同質(zhì)外延了一層Mg O薄膜(Epi-Mg O),薄膜的表面形貌及雙軸織構(gòu)均得到了改善。成功制備出50 m長Epi-Mg O/IBAD-Mg O薄膜,薄膜的織構(gòu)均勻性良好,面外半高寬和面內(nèi)半高寬分別為3°左右和6°左右。理論上,雙面YBCO能夠使臨界電流翻倍,從而產(chǎn)生更高的經(jīng)濟(jì)效益。因此,本論文設(shè)計(jì)了雙面IBAD-Mg O緩沖層結(jié)構(gòu),為雙面YBCO薄膜提供良好的生長襯底?朔穗p面IBAD-Mg O緩沖層的制備技術(shù)難題,制備了50 m長雙面Epi-Mg O/IBAD-Mg O薄膜,一面Mg O薄膜的(35)w和(35)(37)分別為2.8~3.2°和5.3~6.7°,另一面Mg O的(35)w和(35)(37)分別為2.6~3.3°左右和4.2~6°。3、采用低成本的中頻反應(yīng)磁控濺射法(MF)制備雙面LMO模板層,并對該系統(tǒng)的加熱裝置進(jìn)行改造,新的加熱裝置原理是將直流電通入緩沖層帶材兩側(cè),利用基帶自身電阻產(chǎn)生的熱量來給薄膜外延生長提供能量。新的加熱方式可以提升溫度的均勻性,并實(shí)現(xiàn)帶材的快速升降溫。經(jīng)驗(yàn)證,MF-LMO的最大制備效率高達(dá)67 m/h。在最優(yōu)化工藝下制備了20 m長雙面LMO模板層,薄膜的雙軸織構(gòu)均勻性和一致性良好,一面的(35)w和(35)(37)分別為2°左右和4~5°,另一面的(35)w和(35)(37)分別為2°左右和5~6°。最終獲得的YBCO帶材兩面的臨界電流分別為180 A/cm-width和110 A/cm-width,兩面總臨界電流為290 A/cm-width,驗(yàn)證了雙面緩沖層結(jié)構(gòu)的技術(shù)可行性。4、通過將LMO模板層直接沉積在IBAD-Mg O薄膜表面的方法來簡化緩沖層制備工藝,降低制備成本。XRD的q-2q掃描結(jié)果顯示LMO薄膜沉積在IBAD-Mg O表面需要較高的生長溫度(820°C)來克服LMO與IBAD-Mg O之間大的晶格應(yīng)變能。最優(yōu)化條件下制備LMO/IBAD-Mg O薄膜的面外半高寬和面內(nèi)半高寬分別為3.5°和7.2°,最終緩沖層制備工序可降至3道,而國際通用的緩沖層制備工序則為6道,因此,該結(jié)構(gòu)簡化了緩沖層的工藝步驟,降低了制備成本。5、開發(fā)了新的IBAD織構(gòu)化材料(Na F,Na Cl),與IBAD-Mg O相比,Na F與Na Cl具有以下優(yōu)點(diǎn):1、在涂覆層數(shù)為4層的Y_2O_3襯底上(5μm′5μm,RMS=8nm),Epi-Na F/IBAD-Na F((35)w=2°,(35)(37)=7.5°)與Epi-Na Cl/IBAD-Na Cl((35)w=2.1°,(35)(37)=8°)能夠獲得高質(zhì)量的雙軸織構(gòu),而IBAD-Mg O必須在RMS值小于2 nm的Y_2O_3襯底(涂覆層數(shù)大于16層)上才能夠獲得雙軸織構(gòu);2、當(dāng)離子源的離子束流為25 m A時(shí),Na F和Na Cl獲得雙軸織構(gòu)的沉積速率工藝窗口分別為0.08~2 nm/s和0.06~3.5 nm/s,而Mg O的沉積速率工藝窗口僅為0.06~0.12 nm/s。以上兩個(gè)優(yōu)點(diǎn)說明IBAD-Na F和IBAD-Na Cl具備制造難度低,工藝窗口寬的優(yōu)點(diǎn),適合雙軸織構(gòu)襯底的低成本快速制備。
[Abstract]:YBa2Cu3O7-x (YBCO) high temperature superconducting strip has excellent electrical properties. It has a broad application prospect in the fields of transmission cable, strong magnet, motor, current limiter and other fields. In order to obtain high performance YBCO superconducting strip, high quality buffer layer must be prepared to provide growth substrate for YBCO. At present, there are still some problems in the preparation process of the buffer layer. The key issues need to be solved: such as high quality biaxial texture, high preparation cost and uniformity of buffer layer. Therefore, this paper is devoted to the preparation of low cost, high quality and good uniformity buffer layer on metal substrates. The main contents are as follows: 1, the SDP system is designed independently, and the system is used in the system. Y_2O_3 amorphous film was prepared on the base surface of Hastelloy C276. The effect of heat treatment temperature and coating number on the surface morphology and crystallinity of amorphous films was studied. The amorphous thin film with a surface mean square root roughness (RMS) of only 0.2 nm in the range of 5 m '5 m was successfully prepared, which provided a good substrate for the growth of IBAD-Mg O, but Y_, however, Y_ The crystallization of 2O_3 films may occur during the heat treatment process, and the recrystallization of Y_2O_3 will occur during the preparation of the subsequent La Mn O3 (LMO) template layer. Therefore, this laboratory is doped with Al_2O_3 in the Y_2O_3 film to improve the crystallization temperature of the amorphous film, compared to Y_2O_3 (500 degree C), Y_2O_3-Al_2O_3 (YAl) has a higher thermal stability. The optimized heat treatment temperature range is wider (480~540 C) and no recrystallization.2 is found in the subsequent LMO preparation process. Mg O texture is prepared on the amorphous film surface by ion beam assisted deposition (IBAD) technology, and the outer half width ((35) w) and the half width ((35) (37)) of the Mg O texture are successfully prepared on the short sample, and the Epi-Mg O/I is about 3.7 degrees in the surface. BAD-Mg O film. Using high energy electron diffraction (RHEED) to monitor the evolution process of the dual axis texture of IBAD-Mg O in real time, it is found that the dual axis texture is suddenly formed at the nucleation stage (the thickness of the film is about 2.2 nm).R.T.Brewer et al. The small island cascade theory can explain the process of the formation of the IBAD-Mg O biaxial texture. Based on this theory, a kind of two steps is used. The biaxial texturing process of IBAD-Mg O is accelerated, and IBAD-Mg O can obtain biaxial texture at a thickness of only 0.5 nm. A Mg O film (Epi-Mg O) epitaxial layer of Mg O thin film (Epi-Mg O) is made on IBAD-Mg O substrate by self epitaxy technology. The surface morphology and biaxial texture of the thin film are improved. The thin film, thin film, thin film, and film are successfully prepared. The texture uniformity is good, the outer half width and the half width of the surface are about 3 degrees and about 6 degrees respectively. In theory, the double side YBCO can double the critical current, thus producing higher economic benefits. Therefore, this paper designs a double-sided IBAD-Mg O buffer layer structure to provide a good growth substrate for the double-sided YBCO thin film. The double-sided IBAD-Mg O is overcome. 50 m long double-sided Epi-Mg O/IBAD-Mg O thin film is prepared, and the (35) w and (35) (37) of Mg O film are 2.8~3.2 and 5.3~6.7, and the other Mg O (35) w and (35) (37) are left and right, respectively, and the low cost medium frequency reactive magnetron sputtering is used to prepare the double-sided template layer. The heating device is reformed. The principle of the new heating device is to connect the direct current into the strip of the buffer layer and use the heat generated by the self resistance of the baseband to provide energy for the epitaxial growth of the film. The new heating method can improve the uniformity of the temperature and realize the rapid rise and fall temperature of the strip. It is verified that the maximum preparation efficiency of the MF-LMO is high. The 20 m long double-sided LMO template layer was prepared under the optimal process. The uniformity and consistency of the dual axis texture of the film was good, the one side (35) w and (35) (37) were about 2 degrees and 4~5, respectively, the other side (35) w and (35) (37) were 2 degrees and 5~6 degrees respectively. The critical current of the final obtained YBCO strip was 180 A/cm-width and 110 A respectively. /cm-width, the total critical current of two sides is 290 A/cm-width, which validates the technical feasibility of the double-sided buffer layer structure.4. By depositing the LMO template layer directly on the surface of the IBAD-Mg O film, the preparation process of the buffer layer is simplified. The q-2q scanning result of the preparation cost.XRD shows that the LMO thin film needs a higher growth on the IBAD-Mg O surface. The temperature (820 C) can overcome the large lattice strain energy between LMO and IBAD-Mg O. Under optimal conditions, the outer surface half width of LMO/IBAD-Mg O thin film and the inner half width of surface half height are respectively 3.5 and 7.2 degrees, and the final buffer layer preparation process can be reduced to 3, and the international common buffer layer preparation is 6. Therefore, the structure simplifies the work of the buffer layer. A new IBAD textured material (Na F, Na Cl) has been developed in the process of reducing the cost of preparing.5. Compared with IBAD-Mg O, Na F and Na Cl have the following advantages: 1, on the substrate with a layer of 4 layers (35) (35) (37) (35), (35) (35) (37)) can be obtained. A high quality biaxial texture is obtained, and IBAD-Mg O must be able to obtain a dual axis texture on a Y_2O_3 substrate with a RMS value of less than 2 nm (the number of coating layers greater than 16 layers). 2, when the ion beam flow of the ion source is 25 m A, the deposition rate process window for the Na F and Na Cl is a dual axis texture. The art window is only 0.06~0.12 nm/s. above two advantages. It shows that IBAD-Na F and IBAD-Na Cl have the advantages of low manufacturing difficulty and wide process window, which are suitable for low cost and rapid preparation of dual axis texture substrate.
【學(xué)位授予單位】:電子科技大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2016
【分類號(hào)】:TM26;O484
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 ;Texture Analysis of Superconducting Films Based on YBCO System[J];Journal of University of Science and Technology Beijing(English Edition);2000年02期
2 高之爽;汪靜;陳振邦;關(guān)治衛(wèi);張逸民;劉忠民;楊德林;胡行;郭益群;;YBCO在氮純化過程中的催化氧化作用[J];中國稀土學(xué)報(bào);2008年04期
3 ;Effect of Y_2Ba_4CuWO_y Addition on the Properties of Single Domain YBCO Superconductors by TSIG Technique[J];稀有金屬材料與工程;2011年S3期
4 ;Effect of Y_2Ba_4CuNbO_y on the Properties of Single Domain YBCO Superconductor by TSIG Process[J];稀有金屬材料與工程;2011年S3期
5 ZHAO GaoYang;JIA JiQiang;JIANG Fen;LEI Li;MA JunShan;;Fabrication of YBCO superconducting microarray by sol-gel process using photosensitive metal chelates[J];Science China(Technological Sciences);2013年06期
6 索紅莉;張子立;;生物礦化法制備平片狀YBCO粉末及導(dǎo)體[J];中國材料進(jìn)展;2013年09期
7 王弘,徐斌,尚淑霞,楊兆荷,宋永遠(yuǎn),于文濤,楊忠森,王卓,李翠萍,梅梁模;Growth of Superconducting YBCO Crystals with High Tc[J];人工晶體;1988年Z1期
8 羅樂,魏旺水,宮世明,胡素輝,張永紅,陳開遠(yuǎn),邱經(jīng)武,唐志明,蔡一鳴,崔長庚,李山林;PREPARATION, PROPERTIES AND DEFECT DISTRIBUTION OF HIGH J_C YBCO SUPERCONDUCTOR BY MTG PROCESS[J];Chinese Science Bulletin;1991年08期
9 ;Optical Response of Granular YBCO Weak Link[J];Chinese Journal of Lasers;1996年01期
10 王小平,楊秉川,石東奇,彭正順,李文祥,華佩文,孫麗虹,張啟海;Microstructure and Application of YBCO Superconductive Films with Low Surface Resistance[J];Rare Metals;1997年03期
相關(guān)會(huì)議論文 前10條
1 葉帥;索紅莉;劉敏;趙躍;何東;祝永華;馬靈姬;周美玲;;YBCO厚膜的制備及其性能研究[A];第六屆中國功能材料及其應(yīng)用學(xué)術(shù)會(huì)議論文集(2)[C];2007年
2 Chuanbao Wu;Gaoyang Zhao;Yuanqing Chen;;Effect of Firing Temperature on Microstructure and Superconductivity of YBCO Films Derived from Low-fluorine Solution[A];中國材料大會(huì)2012第11分會(huì)場:超導(dǎo)材料與應(yīng)用技術(shù)論文集[C];2012年
3 趙躍;劉敏;董杰;梁錦霞;何嘉;索紅利;周美玲;;等離子體表面處理對YBCO薄膜表面形貌的研究[A];第五屆中國功能材料及其應(yīng)用學(xué)術(shù)會(huì)議論文集Ⅲ[C];2004年
4 王三勝;韓征和;陳勝;史鍇;杜鵬;裘蕾;王林;;YBCO覆膜導(dǎo)體制備新技術(shù)及其進(jìn)展[A];2004年中國材料研討會(huì)論文摘要集[C];2004年
5 Guomin Zhang;Zhenling Xu;Hui Yu;Jincheng Li;;AC Losses of YBCO Coated Conductor with Ferromagnetic Substrate in DC Field[A];中國材料大會(huì)2012第11分會(huì)場:超導(dǎo)材料與應(yīng)用技術(shù)論文集[C];2012年
6 郭漢生;周美玲;史佳新;;為YBCO超導(dǎo)帶材的研究和應(yīng)用開發(fā)新的織構(gòu)基帶[A];2000年材料科學(xué)與工程新進(jìn)展(上)——2000年中國材料研討會(huì)論文集[C];2000年
7 高之爽;楊德林;王振峰;閆宏杰;彭奎慶;趙俊學(xué);劉清青;朱志立;胡行;郭益群;孟令啟;王珊;許海軍;李華岑;;YBCO的吸附特性及空分應(yīng)用[A];2002年材料科學(xué)與工程新進(jìn)展(上)——2002年中國材料研討會(huì)論文集[C];2002年
8 高之爽;胡行;劉大軍;楊德林;郭鄭元;李志成;王忠建;謝耀東;戴思聰;曾建晟;;YBCO純化技術(shù)的工業(yè)應(yīng)用[A];變壓吸附設(shè)備技術(shù)交流會(huì)論文集[C];2004年
9 王三勝;;離子束輔助沉積技術(shù)及其在YBCO覆膜導(dǎo)體制備方面的應(yīng)用進(jìn)展[A];中國真空學(xué)會(huì)2006年學(xué)術(shù)會(huì)議論文摘要集[C];2006年
10 張翠萍;于澤銘;楊萬民;汪京榮;唐曉東;馮勇;周廉;;單疇YBCO超導(dǎo)塊材的氧工藝與磁懸浮性能研究[A];2000年材料科學(xué)與工程新進(jìn)展(上)——2000年中國材料研討會(huì)論文集[C];2000年
相關(guān)博士學(xué)位論文 前10條
1 楊堅(jiān);YBCO涂層導(dǎo)體長帶與厚膜制備技術(shù)及釘扎機(jī)制研究[D];北京有色金屬研究總院;2013年
2 楊楓;高溫超導(dǎo)材料YBCO與SmOFFeAs的光伏特性研究[D];河南師范大學(xué);2015年
3 夏鈺東;YBCO超導(dǎo)帶材緩沖層的生長控制研究[D];電子科技大學(xué);2014年
4 郭培;鍺/導(dǎo)電氧化物光學(xué)薄膜制備及性質(zhì)[D];電子科技大學(xué);2015年
5 張飛;YBCO帶材超導(dǎo)層的MOCVD研究[D];電子科技大學(xué);2015年
6 郭林山;高溫超導(dǎo)膜面外取向精細(xì)調(diào)控及大尺寸晶體生長研究[D];上海交通大學(xué);2015年
7 羅清威;金屬基帶上制備YBCO超導(dǎo)帶材的基礎(chǔ)研究[D];東北大學(xué);2013年
8 唐天威;高性能YBCO單疇塊材的制備及其超導(dǎo)性能的研究[D];上海大學(xué);2016年
9 薛炎;基于IBAD路線制備YBCO超導(dǎo)帶材緩沖層的研究[D];電子科技大學(xué);2016年
10 高鋒;化學(xué)溶液法制備YBCO超導(dǎo)層及鈣鈦礦結(jié)構(gòu)導(dǎo)電緩沖層的研究[D];東北大學(xué);2009年
相關(guān)碩士學(xué)位論文 前10條
1 高鵬舉;YBCO/有機(jī)聚合物共混物研究[D];福建師范大學(xué);2009年
2 曹軍紅;不同雜質(zhì)離子摻雜YBCO薄膜性能的研究[D];西南交通大學(xué);2016年
3 孫敏;YBCO高溫超導(dǎo)帶材的焊接與并聯(lián)研究[D];西南交通大學(xué);2016年
4 陳果;SDP法生長YBCO超導(dǎo)帶材緩沖層研究[D];電子科技大學(xué);2016年
5 韓夢媛;激光照射下高Tc超導(dǎo)體YBCO陶瓷的遲滯效應(yīng)[D];河南師范大學(xué);2016年
6 肖山;直流濺射法制備YBCO帶材研究[D];電子科技大學(xué);2010年
7 戴邵康;液相源金屬有機(jī)物化學(xué)氣相法制備YBCO高溫超導(dǎo)薄膜[D];電子科技大學(xué);2010年
8 劉宇;高溫超導(dǎo)YBCO薄膜中納米氧化物結(jié)構(gòu)的制備與研究[D];南昌大學(xué);2010年
9 嚴(yán)武衛(wèi);用化學(xué)溶液法快速制備YBCO超導(dǎo)薄膜的研究[D];陜西師范大學(xué);2011年
10 馬麗;YBCO生長界面特性及相轉(zhuǎn)化機(jī)理研究[D];西北工業(yè)大學(xué);2007年
,本文編號(hào):1892656
本文鏈接:http://sikaile.net/guanlilunwen/gongchengguanli/1892656.html