納米結(jié)構(gòu)薄膜的磁共振和磁耦合
本文選題:坡莫合金-稀土 + 自旋泵浦; 參考:《東南大學(xué)》2016年博士論文
【摘要】:磁性材料的研究長久以來一直是磁學(xué)研究的重要組成部分,其中軟磁材料因?yàn)槠涓唢柡痛呕瘡?qiáng)度和低矯頑力等特點(diǎn)也廣泛的應(yīng)用于各個領(lǐng)域。近年來,隨著自旋電子學(xué)的快速發(fā)展,軟磁薄膜材料再次迎來了研究熱潮,軟磁材料與非磁金屬的多層膜結(jié)構(gòu)被大量的應(yīng)用于如自旋泵浦效應(yīng),自旋霍爾效應(yīng),自旋塞貝克效應(yīng)等研究。坡莫合金作為經(jīng)典的軟磁材料,擁有更低的矯頑力和磁各向異性,是目前研究最多的自旋電子學(xué)器件材料。但是,由于坡莫合金的軌道淬滅,自旋軌道耦合作用相對較弱,造成阻尼因子偏小,很大程度上限制了它的應(yīng)用。稀土元素作為重要的戰(zhàn)略資源,在硬磁和軟磁領(lǐng)域都有很重要的應(yīng)用。稀土元素通常在室溫下表現(xiàn)出弱磁性,并且本身具有較強(qiáng)的自旋軌道耦合,其與坡莫合金構(gòu)成的多層膜結(jié)構(gòu),在保持較好的軟磁特性的基礎(chǔ)上,可以改變樣品整體的阻尼因子,這一點(diǎn)對構(gòu)成自旋轉(zhuǎn)移力矩振蕩器等自旋器件是十分關(guān)鍵的。另一方面,強(qiáng)自旋軌道耦合材料一直是自旋電子材料的一個研究熱點(diǎn),包括自旋泵浦效應(yīng)以及自旋霍爾效應(yīng)均有涉及。自旋軌道耦合作用又可以分為內(nèi)稟和外稟兩類,內(nèi)稟是由材料本身的自旋-軌道相互作用引起的,強(qiáng)的內(nèi)稟自旋軌道耦合作用會表現(xiàn)出強(qiáng)的自旋泵浦效應(yīng)和自旋霍爾效應(yīng)等;外稟則是由于摻雜等外因引起的自旋軌道耦合加強(qiáng),如Skew Scattering和Side Jump等等,外稟自旋軌道耦合也會表現(xiàn)出強(qiáng)的自旋霍爾效應(yīng),但是不會產(chǎn)生大的自旋泵浦效應(yīng)。隨著軍事及通訊產(chǎn)業(yè)的發(fā)展,軟磁材料在高頻率段的應(yīng)用也日益得到重視。傳統(tǒng)的軟磁材料如鐵磁金屬及其合金,或者鐵氧體等等,都存在一定的缺陷,導(dǎo)致材料在高頻下會有較大的磁滯損耗和渦流損耗,不利于應(yīng)用。隨著鐵基納米非晶帶材/薄膜的提出,這些問題得到了解決,通過帶材或者薄膜結(jié)構(gòu)來減小渦流損耗,改變退火條件控制晶粒生長來得到合適的矯頑力,材料的電阻率也可以通過退火氧化變大,從而可以得到高磁導(dǎo)率,高磁化強(qiáng)度和大電阻率的高頻軟磁材料。本論文主要研究了坡莫合金和稀土(Tb和Nd)的多層膜結(jié)構(gòu)的鐵磁共振信息,討論了多Py/RE界面對自旋泵浦效應(yīng)的影響;通過研究坡莫合金與Cu基底Ta元素?fù)诫s的雙層膜結(jié)構(gòu)的自旋霍爾效應(yīng),對摻雜引起的自旋軌道耦合增強(qiáng)做出研究分析;采用單輥甩帶方法制備Fe-Hf-Cr-B合金帶材,通過改變Cr的成分含量和材料的退火條件,研究材料的磁性、電阻率和磁導(dǎo)率。研究結(jié)果如下:一、坡莫合金/稀土異質(zhì)結(jié)構(gòu)的界面自旋泵浦效應(yīng)研究制備了Py/RE,Py/RE/Py兩個結(jié)構(gòu)的薄膜樣品,稀土元素分別選用重稀土Tb和輕稀土Nd,主要針對Py/RE的界面泵浦效應(yīng),開展了對雙層膜和三層膜的磁化動力阻尼的研究,同時比較Py/RE以及Py/RE/Py的實(shí)驗(yàn)結(jié)果,探索了多界面對自旋泵浦效應(yīng)和磁化動力阻尼的影響。得到的研究結(jié)果如下:1、在Py/Tb(Py/Tb/Py)系列樣品中,對雙層膜,樣品的矯頑力隨著Tb的插入增厚總體呈增大趨勢,從2 Oe增大到9 Oe,最后趨于穩(wěn)定,飽和磁化強(qiáng)度隨Tb增厚而減小,從787emu/cm3降低到700emu/cm3左右;而對于三層膜,總體變化趨勢跟雙層膜一致,Hc從20e增大到80e左右,Ms從820降低至680emu/cm3,但是會在dTb≥12nm時出現(xiàn)雙Hc現(xiàn)象,說明三層膜樣品中的兩個坡莫合金層的矯頑力出現(xiàn)差異,可能是由于Py/Tb界面和Tb/Py界面對兩磁層的影響不同所致。2、在Py/Nd(Py/Nd/Py)系列樣品中,雙層膜和三層膜的矯頑力和飽和磁化強(qiáng)度都基本維持不變,雙層膜的Hc一直保持在3 Oe左右,三層膜則有輕微變化,從3 Oe降到1 Oe后又增大穩(wěn)定在2 Oe,Ms則分別在770和790 emu/cm3左右震蕩。這是由于Nd居里溫度較低,室溫下沒有磁性,不會被相鄰的Py誘導(dǎo)出磁矩,因此對薄膜的磁性不會造成影響,反觀Tb的居里溫度與室溫接近,由于緊鄰效應(yīng)誘導(dǎo)的反方向磁矩會降低薄膜的Ms。3、用變頻VNA-FMR鐵磁共振對樣品的共振場和共振線寬進(jìn)行研究分析。通過對共振場和共振線寬的擬合發(fā)現(xiàn):對Py-Tb系列,隨著Tb層厚度增加,同一頻率的共振場逐漸降低,面內(nèi)的單軸各向異性常數(shù)逐漸增大,共振線寬則隨著dTb增大變寬最終趨于飽和;Py-Nd薄膜同一頻率的共振峰位置則兀乎不隨dNd而變化,這和前面觀測到的Ms幾乎不變相吻合,另外也說明Py-Nd系列樣品的面內(nèi)單軸各向異性沒有顯著變化,共振線寬會隨dNd增加而增大最終趨于飽和。4、根據(jù)線寬和阻尼的關(guān)系式得出兩個系列樣品的阻尼因子隨非磁層厚度的變化趨勢,分別利用雙層膜和三層膜模型進(jìn)行擬合。對于Py-Tb系列,雙層膜和三層膜的自旋泵浦阻尼因子均隨dTb增加而從0.006左右增大并最終飽和穩(wěn)定在0.045左右,但是雙層膜的增長速度更快。根據(jù)擬合結(jié)果,雙層膜和三層膜的自旋擴(kuò)散長度均約為λ=6nm,界面混合電導(dǎo)則分別為gpy/Tb=50.5×1015cm-2和58.2×1015cm-2。對Py-Nd系列,其阻尼變化情況和Tb時基本一致,從0.006增大到0.020左右,比Tb的增幅要小,擬合得到Nd的自旋擴(kuò)散長度約為λ=11nm,界面混合電導(dǎo)約為gpy/Th=25×1015cm-2左右。5、從擬合結(jié)果看,Tb和Nd的自旋泵浦效應(yīng)都很明顯:Nd的自旋軌道耦合要比常見的強(qiáng)L-S耦合元素如Pt,Pd更強(qiáng),因?yàn)槠溆懈蟮慕缑婊旌想妼?dǎo),而Tb的自旋軌道耦合則更強(qiáng),不僅自旋擴(kuò)散長度要更小,界面混合電導(dǎo)也是Nd的兩倍左右。此外,我們提出了有效自旋擴(kuò)散長度的概念,三層膜引入的第二個RE/Py界面會增大自旋回流的幾率,使得能量耗散降低,阻尼的增加更加緩慢,因此表觀上三層膜有更大的自旋擴(kuò)散長度。二、Cu基材料摻雜Ta引起的強(qiáng)自旋軌道耦合研究采用磁控濺射儀制備了由坡莫合金Py和Cu基中摻雜不同成分的Ta元素構(gòu)成的雙層膜結(jié)構(gòu),通過鐵磁共振和平面霍爾效應(yīng)的測量方法對薄膜的自旋軌道耦合作用進(jìn)行了研究,得到結(jié)果如下:1、利用磁控濺射儀制備了Py/Cu-Ta的雙層膜結(jié)構(gòu),其中采用Ti作為緩沖層,SiO2作為保護(hù)層。固定Py層的厚度為2nm,改變Cu-Ta的厚度來研究厚度依賴性,并通過共濺射的方法實(shí)現(xiàn)不同摻雜成分的Cu-Ta薄膜層,質(zhì)量組分依次為7%,10%和12%。2、自旋軌道耦合作用可以分為內(nèi)稟和外稟兩類,內(nèi)稟來自于非金屬本身由于f電子引起的強(qiáng)自旋軌道耦合作用,而外稟則是由于摻雜等引起的Side Jump和Skew Scattering等作用造成的自旋軌道耦合加強(qiáng)。通過鐵磁共振研究了不同成分Py/Cu-Ta樣品的自旋泵浦效應(yīng),結(jié)果表明所有成分的Py/Cu-Ta樣品的共振線寬和阻尼因子并沒有明顯的增大,阻尼因子的大小均約為0.007左右,與單層的Py的本征阻尼近似,說明樣品中沒有明顯的自旋泵浦效應(yīng),Cu-Ta薄膜的內(nèi)稟自旋軌道耦合作用很弱。3、采用平面霍爾效應(yīng)的方法來研究不同成分的Py/Cu-Ta雙層膜的自旋霍爾效應(yīng)。利用光刻掩膜技術(shù)刻蝕成Hall Bar結(jié)構(gòu)進(jìn)行輸運(yùn)測量,推導(dǎo)計算并擬合橫向電壓值,最終得到自旋霍爾系數(shù)和自旋霍爾角。研究發(fā)現(xiàn)Cu-Ta能產(chǎn)生和Pt大小近似的較強(qiáng)的自旋霍爾效應(yīng),在Cu-Ta薄膜厚度為2nm左右時,摻雜成分最低7%的Cu-2Ta薄膜的自旋霍爾角可以達(dá)到0.066,這說明Cu基中摻雜Ta元素確實(shí)增強(qiáng)了外稟自旋軌道耦合作用。三、摻Cr-FeHfBO帶材的高頻磁特性通過單輥甩帶的方法制備了非晶態(tài)Fe-Hf-Cr-B合金帶材,利用Cr元素的摻入來進(jìn)一步抑制Fe的氧化,并通過改變Cr的成分配比以及樣品的退火條件來獲取可應(yīng)用于高頻下的軟磁材料,得到研究結(jié)果如下:1、通過單輥快淬甩帶的方法制備了不同成分的Fe-Hf-Cr-B非晶帶材樣品,并對樣品進(jìn)行不同條件的退火。退火時采用低溫起泡器來降低退火環(huán)境的氧分壓,而Cr元素的引入也可以進(jìn)一步抑制Fe在退火過程中的氧化,以其獲得更好的高頻軟磁帶材樣品。2、對Fe80Hf9Cr8B3和Fe85Hf10Cr2B3兩個系列樣品的形貌結(jié)構(gòu)表征和靜態(tài)磁性的測量,發(fā)現(xiàn)Fe85Hf10Cr2B3的樣品矯頑力隨退火溫度呈先減小后增大的趨勢,并在600℃退火1.5小時后表現(xiàn)出最好的靜磁特性,其矯頑力Hc為0.560e,飽和磁感應(yīng)強(qiáng)度Bs可以達(dá)到1.33T,并且該樣品的晶粒尺寸也符合Fe元素的交換耦合長度,說明Fe85Hf10Cr2B3隨著晶粒生長,在晶粒尺寸達(dá)到29nm左右時產(chǎn)生了交換耦合作用,使得樣品表現(xiàn)出最小的矯頑力。3、為了進(jìn)一步驗(yàn)證Fe85Hf10Cr2B3樣品作為高頻軟磁材料的有力競爭者,電阻率和高頻磁導(dǎo)率也進(jìn)行了測量分析。電阻率最大發(fā)生在500℃退火1小時的樣品中,約為200μΩ·cm,靜磁特性最好的600℃退火1.5小時的樣品電阻率為165μΩ-cm,這一結(jié)果雖然沒有預(yù)想的電阻率大,但是比一般的金屬軟磁材料的電阻率要高兩個數(shù)量級,并且跟課題組之前的Fe89Hf8B3工作相比,電阻率也增加了一倍,可以很大程度上降低高頻下工作時的渦流損耗。4、通過阻抗分析儀對上述電阻率最高的兩個樣品進(jìn)行了磁導(dǎo)率的測量分析,發(fā)現(xiàn)當(dāng)頻率達(dá)到10MHz時,樣品的實(shí)部磁導(dǎo)率仍能保持250以上,這一結(jié)果從穩(wěn)定性和高磁導(dǎo)率兩方面驗(yàn)證了樣品是很好高頻軟磁材料。
[Abstract]:The study of magnetic materials has long been an important part of magnetic research. Soft magnetic materials have been widely used in various fields because of their high saturation magnetization and low coercivity. In recent years, with the rapid development of spintronics, soft magnetic thin film materials have ushered in the upsurge of research, soft magnetic materials and non magnetic gold. The multilayer structure of the genus is widely used in the study of spin pump effect, spin Holzer effect, spin cibeck effect and so on. As a classic soft magnetic material, permalloy has lower coercivity and magnetic anisotropy. It is the most studied spintronics device material at present. However, because of the orbit quenching of permalloy, the spin orbit of permalloy The coupling of the channel is relatively weak, which makes the damping factor smaller and restricts its application to a large extent. As an important strategic resource, rare earth elements are very important in both hard and soft magnetic fields. Rare earth elements usually exhibit weak magnetic properties at room temperature and have strong spin orbit coupling, which are composed of permalloy. The multi layer membrane structure can change the damping factor of the whole sample on the basis of good soft magnetic properties, which is crucial to spin devices such as spin transfer torque oscillator. On the other hand, the strong spin orbit coupling material has always been a hot spot of spintronic material, including the spin pump effect. The spin Holzer effect is involved. The spin orbit coupling can be divided into two types of intrinsic and external, which are caused by the spin orbit interaction of the material itself. The strong intrinsic spin orbit coupling will show a strong spin pump effect and a spin Holzer effect, and the external factor is caused by doping and other external causes. The spin orbit coupling is strengthened, such as Skew Scattering and Side Jump, etc., the intrinsic spin orbit coupling will also show a strong spin Holzer effect, but it will not produce a large spin pump effect. With the development of the military and communication industry, the application of the soft magnetic materials at the high frequency rate is also paid more attention. There are some defects in their genera and their alloys, or ferrite, and so on, which results in large hysteresis loss and eddy current loss at high frequency, which is not conducive to application. With the introduction of iron based nanoamorphous ribbons / films, these problems have been solved. The loss of eddy current is reduced by the strip or thin film structure, and the annealing conditions are controlled. The suitable coercive force is obtained by grain growth, and the resistivity of the material can also be increased by annealing, thus the high magnetic permeability, high magnetization and large resistivity can be obtained. This paper mainly studies the ferromagnetic resonance information of the multilayer film structure of permalloy and rare earth (Tb and Nd), and discusses the multiple Py/RE interface. The effect of spin pump effect is studied by studying the spin Holzer effect of the double membrane structure of the Cu base Ta element doped with permalloy and substrate. The spin orbit coupling enhancement caused by doping is studied and analyzed. The Fe-Hf-Cr-B alloy strip is prepared by single roll strip rejection method, and the material content and the annealing conditions of the material are changed to study the material. The study results are as follows: first, the interfacial spin pump effect of permalloy / rare earth heterostructure is studied to prepare the Py/RE, Py/RE/Py two structure film samples. The rare earth elements are selected as heavy rare earth Tb and light rare earth Nd, respectively, for the boundary surface pumping effect of Py/RE, and the double layer and three layer films are carried out. The study of the magnetization dynamic damping, at the same time compared the experimental results of Py/RE and Py/RE/Py, explored the effects of multi boundary on the spin pump effect and the magnetization damping. The results obtained are as follows: 1, in the Py/Tb (Py/Tb/Py) series, the coercive force of the sample increases with the thickness of the Tb, and increases from the 2 Oe to the double layer. As large as 9 Oe, it tends to be stable at the end. The saturation magnetization decreases with the thickening of Tb and decreases from 787emu/cm3 to about 700emu/cm3. For the three layer film, the overall change trend is consistent with the double layer membrane. Hc increases from 20E to 80e, Ms decreases from 820 to 680emu/cm3, but the dual Hc phenomenon occurs at dTb > 12NM, indicating two of the three layer membrane samples. The coercivity difference of the permalloy layer may be caused by the difference between the Py/Tb interface and the Tb/Py interface on the two magnetosphere. In the Py/Nd (Py/Nd/Py) series, the coercive force and the saturation magnetization of the double layer and three layers are basically maintained, the Hc of the double layer remains at about 3 Oe, and the three layer film has a slight change from 3. Oe decreases to 1 Oe and increases steadily at 2 Oe, and Ms is oscillating around 770 and 790 emu/cm3, respectively. This is due to the low temperature of Nd Curie, no magnetic properties at room temperature, no magnetic moments induced by adjacent Py, so the magnetic properties of the film will not be affected, but the Curie temperature of Tb is close to the room temperature, due to the reverse direction magnetic moment induced by the immediate effect. The resonance field and resonance line width of the sample are analyzed by the frequency conversion VNA-FMR ferromagnetic resonance (Ms.3). By fitting the resonance field and the resonance line width, the resonance field of the Py-Tb series decreases gradually with the increase of the thickness of the Tb layer, the uniaxial anisotropy of the surface increases gradually, and the resonance line width is followed by the resonance line width. The resonance peak position of dTb becomes more saturated, and the resonance peak position of the same frequency of Py-Nd film does not change with the dNd, which is almost not consistent with the observed Ms. It also shows that the uniaxial anisotropy of the Py-Nd series is not significantly changed, and the resonance line width will increase with the dNd increase and eventually become saturated.4. The relationship between the line width and the damping is obtained. The damping factor of the two series of samples is changed with the thickness of the non magnetic layer, and the double layer and three layer membrane model are used respectively. The spin pump damping factor of the Py-Tb series, the double layer film and the three layer film increases from about 0.006 with the increase of the double layer and the three layer film, and the final saturated stability is around 0.045. The growth rate of the double layer film is faster. According to the fitting results, the spin diffusion length of the double layer and three layer films are all about =6nm, and the interface conductivity is gpy/Tb=50.5 x 1015cm-2 and 58.2 x 1015cm-2. to Py-Nd series respectively. The damping change is basically the same as Tb, and the increase from 0.006 to about 0.020 is smaller than that of Tb, and the Nd is fitted to Nd. The spin diffusion length is about lambda =11nm and the interface conductivity is about gpy/Th=25 x 1015cm-2.5. From the fitting results, the spin pump effect of Tb and Nd is obvious: the spin orbit coupling of Nd is stronger than the common strong L-S coupling elements such as Pt and Pd, because it has a larger boundary mixing conductivity and the Tb spin orbit coupling is stronger. Only the spin diffusion length is smaller and the interface conductivity is about two times that of Nd. In addition, we have proposed the concept of effective spin diffusion length. The second RE/Py interfaces introduced by the three layer film will increase the probability of spin reflux, which makes the energy dissipation lower and the damping increase more slowly, so the apparent spin diffusion of the three layers has a larger spin diffusion. The length. Two, the strong spin orbit coupling caused by Cu based materials doped with Ta, a double layer membrane structure composed of Ta elements doped with different components in the Py and Cu base of permalloy is prepared by a magnetron sputtering instrument. The spin orbit coupling effect of the film is studied by the method of ferromagnetic resonance and plane Holzer effect. The results are as follows. 1, the double layer membrane structure of Py/Cu-Ta was prepared by magnetron sputtering, in which Ti was used as a buffer layer and SiO2 as a protective layer. The thickness of the fixed Py layer was 2nm, the thickness of Cu-Ta was changed to study the thickness dependence, and the Cu-Ta film with different doping components was realized by co sputtering. The mass components were in turn to be 7%, 10% and 12%.2, and spin. The orbital coupling can be divided into two kinds of intrinsic and extrinsic factors, which are derived from the strong spin orbit coupling caused by the f electron due to the non metal itself, but the outside is strengthened by the spin orbit coupling caused by the effect of Side Jump and Skew Scattering caused by doping. The Py/Cu-Ta samples of different components are studied by ferromagnetic resonance. The spin pump effect shows that the resonance line width and damping factor of the Py/Cu-Ta samples of all components do not increase obviously. The damping factor is about 0.007, which is approximate to the intrinsic damping of the single layer Py, indicating that there is no obvious spin pump effect in the sample. The intrinsic spin orbit coupling effect of the Cu-Ta thin film is very weak.3. The plane Holzer effect is used to study the spin Holzer effect of the Py/Cu-Ta double layer with different components. Using the photolithography mask technique to etch the Hall Bar structure to carry out the transport measurement, the calculation and fitting of the transverse voltage value are derived and the spin Holzer coefficient and spin Holzer angle are finally obtained. It is found that the Cu-Ta can produce a stronger approximation of the Pt size. The spin Holzer effect, when the thickness of the Cu-Ta film is about 2nm, the spin Holzer angle of the Cu-2Ta film with the lowest doping content of 7% can reach 0.066, which indicates that the Ta element in the Cu matrix does enhance the intrinsic spin orbit coupling. Three, the high frequency magnetic properties of the Cr-FeHfBO doped strip are prepared by the single roll band rejection method. -B alloy strip is used to further inhibit the oxidation of Fe by adding Cr elements, and to obtain soft magnetic materials which can be applied to high frequency by changing the composition of Cr and the annealing conditions of the samples. The results are as follows: 1, the samples of Fe-Hf-Cr-B amorphous ribbons with different components were prepared by the method of single roll fast quenching zone, and the samples were prepared. Annealing in different conditions. The low temperature foaming device is used to reduce the oxygen partial pressure in the annealing environment, and the introduction of Cr can further inhibit the oxidation of Fe during the annealing process, so as to obtain better high-frequency soft magnetic strip sample.2 and to characterize the morphology and static magnetism of two series of samples of Fe80Hf9Cr8B3 and Fe85Hf10Cr2B3. It is found that the coercivity of Fe85Hf10Cr2B3 samples decreases first and then increases with the annealing temperature, and shows the best magnetostatic characteristic after 1.5 hours annealing at 600 C. The coercive force Hc is 0.560e and the saturation magnetic induction strength Bs can reach 1.33T, and the grain size of the sample also conforms to the exchange coupling length of the Fe element, indicating Fe With the growth of grain, 85Hf10Cr2B3 produced the exchange coupling effect when the grain size was about 29nm. The sample showed the smallest coercive force.3. In order to further verify the Fe85Hf10Cr2B3 sample as a powerful competitor of the high frequency soft magnetic material, the resistivity and the high frequency permeability were also measured and analyzed. The maximum resistivity occurred at 500 C. Among the samples annealed for 1 hours, it is about 200 Omega cm, and the best static magnetic properties at 600 C for 1.5 hours is 165 uh -cm. This result is two orders of magnitude higher than the resistivity of the ordinary metal soft magnetic material, although the resistivity is not expected, and the resistivity is increased compared with the Fe89Hf8B3 work before the project group. With one double, the eddy current loss.4 at high frequency can be reduced to a large extent. The permeability of the two samples with the highest resistivity above is measured and analyzed by the impedance analyzer. It is found that the real permeability of the sample can remain above 250 when the frequency is up to 10MHz. This result is verified from the two aspects of stability and high permeability. It is proved that the sample is a very good high frequency soft magnetic material.
【學(xué)位授予單位】:東南大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2016
【分類號】:O482.54;O484
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 楊軍;戴斌飛;李霞;;自旋軌道耦合效應(yīng)及其應(yīng)用研究[J];大學(xué)物理;2011年08期
2 郝正同;;基于自旋軌道耦合效應(yīng)的能帶分裂機(jī)理[J];綿陽師范學(xué)院學(xué)報;2012年05期
3 張磊;李輝武;胡梁賓;;二維自旋軌道耦合電子氣中持續(xù)自旋螺旋態(tài)的穩(wěn)定性的研究[J];物理學(xué)報;2012年17期
4 儲連元;原子核內(nèi)的自旋軌道耦合[J];物理學(xué)報;1958年06期
5 劉漢昭;包括自旋軌道耦合能和作為動量函數(shù)的位能在內(nèi)的湯、費(fèi)模型及其在原子核中的應(yīng)用[J];物理學(xué)報;1960年06期
6 王元;莊勤;;1f_(7/2)殼層不同種核子組態(tài)核能譜與兩體自旋軌道耦合作用[J];高能物理與核物理;1985年05期
7 陳小暑;張慶營;;兩體自旋軌道耦合力與f_(7/2)殼層能譜[J];高能物理與核物理;1979年04期
8 馮俊生;;自旋軌道耦合作用下的電子雙折射研究[J];安徽教育學(xué)院學(xué)報;2007年03期
9 孫慶豐;謝心澄;王健;;存在自旋軌道耦合的介觀小環(huán)中的持續(xù)自旋流[J];物理;2007年11期
10 楊杰;董全力;江兆潭;張杰;;自旋軌道耦合作用對碳納米管電子能帶結(jié)構(gòu)的影響[J];物理學(xué)報;2011年07期
相關(guān)會議論文 前5條
1 孫慶豐;謝心澄;郭鴻;王健;;自旋軌道耦合和自旋流[A];量子電荷和自旋輸運(yùn)研討會論文集[C];2005年
2 張慶營;;非中心力矩陣元的公式(續(xù))[A];第五次核物理會議資料匯編(中冊)[C];1982年
3 劉計紅;李玉現(xiàn);;自旋軌道耦合對正常金屬/半導(dǎo)體/超導(dǎo)體隧道結(jié)中的散粒噪聲的影響[A];第十六屆全國半導(dǎo)體物理學(xué)術(shù)會議論文摘要集[C];2007年
4 董衍坤;張紅梅;李玉現(xiàn);;自旋軌道耦合對Aharonov-Bohm測量儀中自旋相關(guān)輸運(yùn)的影響[A];第十六屆全國半導(dǎo)體物理學(xué)術(shù)會議論文摘要集[C];2007年
5 和音;騰禮堅;巫光漢;王凡;;夸克互作用勢的唯象研究 Ⅱ.自旋軌道耦合力的影響[A];第五次核物理會議資料匯編(下冊)[C];1982年
相關(guān)博士學(xué)位論文 前10條
1 付正坤;量子簡并費(fèi)米氣體中的自旋軌道耦合[D];山西大學(xué);2014年
2 梁海星;基于SrTiO_3氧化物界面的光伏與自旋軌道耦合效應(yīng)[D];中國科學(xué)技術(shù)大學(xué);2015年
3 杜永平;強(qiáng)自旋軌道耦合體系的第一性原理研究[D];南京大學(xué);2016年
4 呂蒙;半導(dǎo)體材料的磁輸運(yùn)和HgTe島晶的光學(xué)性質(zhì)[D];中國科學(xué)院研究生院(上海技術(shù)物理研究所);2016年
5 羅云榮;應(yīng)用特殊量子態(tài)和自旋軌道耦合操控少粒子的量子隧穿[D];湖南師范大學(xué);2016年
6 王國祥;拓?fù)浣^緣體及其性質(zhì)的研究[D];東南大學(xué);2016年
7 王昱坤;納米結(jié)構(gòu)薄膜的磁共振和磁耦合[D];東南大學(xué);2016年
8 崔靖鑫;自旋軌道耦合冷原子費(fèi)米氣體中的量子效應(yīng)及其應(yīng)用[D];清華大學(xué);2013年
9 段皓;具有各向同性自旋軌道耦合的兩體散射研究[D];清華大學(xué);2013年
10 琚偉偉;過渡金屬團(tuán)簇及氧化物自旋軌道耦合效應(yīng)及電子態(tài)的理論研究[D];復(fù)旦大學(xué);2012年
相關(guān)碩士學(xué)位論文 前10條
1 王敏;自旋軌道耦合串聯(lián)雙量子點(diǎn)體系的全計數(shù)統(tǒng)計[D];太原理工大學(xué);2016年
2 肖婷婷;具有自旋軌道耦合效應(yīng)的旋量BEC方程組的解析解[D];蘭州大學(xué);2016年
3 張明明;硅烯拓?fù)涮匦约拜斶\(yùn)性質(zhì)研究[D];新疆大學(xué);2016年
4 孔繼美;自旋軌道耦合莫特絕緣體Sr_(2-x)IrO_4的晶體結(jié)構(gòu)表征和物理特性研究[D];南京郵電大學(xué);2016年
5 張華;自旋軌道耦合下三組份三維費(fèi)米氣體超流態(tài)研究[D];華中師范大學(xué);2016年
6 要曉騰;自旋軌道耦合效應(yīng)下量子環(huán)鏈的自旋輸運(yùn)性質(zhì)[D];河北師范大學(xué);2015年
7 呂純海;一維量子費(fèi)米氣體中的自旋軌道耦合效應(yīng)[D];蘭州大學(xué);2013年
8 胡麗云;半導(dǎo)體自旋軌道耦合作用下電子自旋輸運(yùn)性質(zhì)的研究[D];湖北大學(xué);2012年
9 羅婷;半導(dǎo)體異質(zhì)結(jié)中自旋軌道耦合調(diào)控的輸運(yùn)性質(zhì)[D];吉林大學(xué);2011年
10 李易;自旋軌道耦合體系中的守恒流[D];復(fù)旦大學(xué);2009年
,本文編號:1886577
本文鏈接:http://sikaile.net/guanlilunwen/gongchengguanli/1886577.html