基于室內(nèi)聲場(chǎng)理論的空調(diào)器室內(nèi)噪聲特性研究
本文選題:空調(diào)器 + 噪聲 ; 參考:《重慶大學(xué)》2014年碩士論文
【摘要】:過(guò)高的空調(diào)設(shè)備噪聲會(huì)對(duì)室內(nèi)人員造成不利影響。目前空調(diào)設(shè)備的噪聲數(shù)據(jù)都是在專門(mén)的消聲實(shí)驗(yàn)室獲得的,這個(gè)數(shù)據(jù)與具體的建筑室內(nèi)的噪聲值存在差異。之所以出現(xiàn)差異是因?yàn)閷?shí)驗(yàn)室測(cè)得噪聲只包括直達(dá)聲,而具體建筑室內(nèi)的噪聲既有直達(dá)聲,也有混響聲。因此,弄清楚空調(diào)器室內(nèi)噪聲的分布和組成,特別是室內(nèi)混響對(duì)空調(diào)器噪聲影響,不僅能為相關(guān)空調(diào)設(shè)備噪聲標(biāo)準(zhǔn)的修訂提供依據(jù),也能為實(shí)際工程中的噪聲控制提供參考。 本文以辦公室內(nèi)空調(diào)器噪聲為研究對(duì)象,首先對(duì)一個(gè)單人辦公室內(nèi)空調(diào)噪聲進(jìn)行了測(cè)試,一方面弄清室內(nèi)噪聲分布特點(diǎn),另一方面對(duì)室內(nèi)聲場(chǎng)求解,求得直達(dá)聲和混響聲的分布;繼而,對(duì)比研究了三個(gè)不同大小房間內(nèi)的室內(nèi)聲場(chǎng),求得混響聲引起的設(shè)備噪聲的增加值;最后,考慮多噪聲源的室內(nèi)混響問(wèn)題,計(jì)算了室內(nèi)兩個(gè)典型噪聲值(最近測(cè)點(diǎn)噪聲——可認(rèn)為是室內(nèi)最大噪聲、混響聲——可認(rèn)為是室內(nèi)最小噪聲)與實(shí)驗(yàn)室噪聲測(cè)量值的差異。論文主要結(jié)論如下: ①空調(diào)器室內(nèi)噪聲分布存在不均勻性:貼近壁面1m以內(nèi)出現(xiàn)近壁面加強(qiáng)效應(yīng),增加量為3到4dB(A);噪聲在室內(nèi)長(zhǎng)、寬方向上都隨與聲源距離的增加,強(qiáng)度下降,長(zhǎng)度方向上的下降趨勢(shì)先快后慢。 ②對(duì)單人辦公室空調(diào)器噪聲室內(nèi)聲場(chǎng)進(jìn)行非線性求解,結(jié)果表明:在距離空調(diào)器一定范圍內(nèi),直達(dá)聲和混響聲都對(duì)總噪聲有貢獻(xiàn);當(dāng)距離超過(guò)某一臨界距離時(shí),,直達(dá)聲小于混響聲10dB(A)以上,此時(shí)直達(dá)聲相對(duì)混響聲來(lái)說(shuō)可以忽略不計(jì);四檔風(fēng)速下的臨界距離均小于房間長(zhǎng)度。 ③空調(diào)器的最近測(cè)點(diǎn)處,由于室內(nèi)混響造成的噪聲增加量ΔLp,在不同風(fēng)速檔位下分布在1.9到3.2dB(A)。另外,在三個(gè)房間的對(duì)比實(shí)驗(yàn)中,不同房間的ΔLp值分布在2.6到3.9dB(A),且房間越小ΔLp值越大。這說(shuō)明室內(nèi)混響對(duì)空調(diào)器噪聲起到加強(qiáng)的作用,且房間越小加強(qiáng)作用越大。 ④在考慮噪聲源數(shù)量和房間面積兩個(gè)因素后,落地式空調(diào)器的ΔLp介于[2,5]dB(A),且隨著房間面積和空調(diào)器臺(tái)數(shù)的增加,趨近于[3,4]dB(A);嵌入式和吊頂式空調(diào)器的ΔLp介于[4,7]dB(A),隨著房間面積和空調(diào)器臺(tái)數(shù)的增加,趨近于[5,6]dB(A)。對(duì)比落地式與嵌入式和吊頂式空調(diào)器,后者的ΔLp值大于前者,相同條件下約相差2dB(A)。
[Abstract]:Excessive noise of air conditioning equipment will have a negative impact on indoor personnel. At present, the noise data of air conditioning equipment are obtained in the special noise control laboratory, which is different from the noise value of the specific building room. The difference is due to the fact that the noise measured in the laboratory only includes direct sound, and the noise in the building is both direct sound and reverberation sound. Therefore, to find out the distribution and composition of indoor noise of air conditioner, especially the influence of indoor reverberation on noise of air conditioner, can not only provide the basis for the revision of noise standard of relevant air conditioning equipment, but also provide a reference for the noise control in practical engineering. In this paper, the noise of air conditioner in office is studied. Firstly, the noise of air conditioner in a single office is tested. On the one hand, the characteristics of indoor noise distribution are clarified; on the other hand, the indoor sound field is solved. The distribution of direct sound and reverberation sound is obtained. Then, the indoor sound field in three different size rooms is comparatively studied, and the added value of equipment noise caused by reverberation is obtained. Finally, the problem of indoor reverberation with multiple noise sources is considered. The difference between two typical indoor noise values (the most recent measurement point noise can be considered as the largest indoor noise and the mixing noise as the minimum noise) and the laboratory noise measurement values are calculated. The main conclusions are as follows: (1) the indoor noise distribution of air conditioner is uneven: the near wall enhancement effect appears within 1 m close to the wall, the increase amount is 3 to 4 dBX, and the intensity of the noise decreases with the increase of the distance between the noise and the sound source in the indoor length and wide direction, and the intensity of the noise decreases with the increase of the distance between the noise and the sound source. The downward trend in the length direction is faster then slower. The results show that both direct sound and reverberation contribute to the total noise in a certain range of distance air conditioners, and when the distance exceeds a certain critical distance, The direct sound is smaller than the reverberation sound (10 dB), and the direct sound can be ignored relative to the reverberation, and the critical distance under the four wind speed is smaller than the room length. (3) at the nearest measuring point of the air conditioner, the noise increment 螖 L _ p caused by indoor reverberation is distributed in the range of 1.9 ~ 3.2dB ~ (-1) in different wind speed gear. In addition, in the contrast experiment of three rooms, the 螖 LP values of different rooms are distributed from 2.6 to 3.9 dBU, and the smaller the room is, the larger the 螖 LP value is. This indicates that indoor reverberation plays an important role in enhancing the noise of air conditioner, and the smaller the room is, the greater the strengthening effect is. (4) after considering the number of noise sources and the room area, the 螖 LP of the floor air conditioner is between [2 ~ 5] dB _ (An), and with the increase of room area and the number of air conditioners, The 螖 LP of the embedded and suspended air conditioners is between [4 ~ 7] dB _ (An) and the number of air conditioners increases with the increase of room area and the number of air conditioners. The 螖 LP value of the latter is larger than that of the former, and the difference is about 2 dBX AU under the same conditions.
【學(xué)位授予單位】:重慶大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2014
【分類(lèi)號(hào)】:TB533;TU831
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 李業(yè);周水清;王軍;李輝;付觀井;;轉(zhuǎn)速對(duì)彎掠軸流風(fēng)機(jī)氣動(dòng)噪聲的影響分析[J];工程熱物理學(xué)報(bào);2014年01期
2 俱利鋒,席德科;離心式通風(fēng)機(jī)噪聲機(jī)理及設(shè)計(jì)與改造中的降噪方法綜述[J];機(jī)械科學(xué)與技術(shù);2002年03期
3 韓文;趙向陽(yáng);;壁掛式空調(diào)噪聲源研究[J];科學(xué)技術(shù)與工程;2009年22期
4 王文團(tuán);劉強(qiáng);石敬華;盧守舟;鄭雁;朱文海;聶益國(guó);;城市道路交通噪聲對(duì)兩側(cè)建筑物室內(nèi)外的影響[J];中國(guó)環(huán)境監(jiān)測(cè);2013年04期
5 劉曉良;祁大同;劉天一;袁民建;;前向離心風(fēng)機(jī)吸聲蝸殼降噪的試驗(yàn)研究[J];西安交通大學(xué)學(xué)報(bào);2009年03期
6 馬大猷;室內(nèi)聲場(chǎng)公式[J];聲學(xué)學(xué)報(bào);1989年05期
7 馬大猷;室內(nèi)有源噪聲控制的潛力[J];聲學(xué)學(xué)報(bào);1993年03期
8 馬大猷;復(fù)議室內(nèi)穩(wěn)態(tài)聲場(chǎng)公式[J];聲學(xué)學(xué)報(bào);2002年05期
9 馬大猷;論室內(nèi)聲場(chǎng)[J];聲學(xué)學(xué)報(bào);2003年02期
10 馬大猷;微穿孔吸聲體吸收帶寬極限[J];聲學(xué)學(xué)報(bào);2003年06期
本文編號(hào):1880078
本文鏈接:http://sikaile.net/guanlilunwen/gongchengguanli/1880078.html