基于單元分析的車輛動力傳動系統(tǒng)建模及扭振減振研究
本文選題:車輛 + 扭振。 參考:《重慶大學(xué)》2014年碩士論文
【摘要】:由發(fā)動機(jī)、離合器、變速器、驅(qū)動輪等組成的車輛動力傳動系統(tǒng),是一個(gè)既有連續(xù)質(zhì)量,又有集中質(zhì)量的非線性耦合的復(fù)雜系統(tǒng),當(dāng)輸入激勵(lì)頻率與系統(tǒng)的固有頻率接近或相等時(shí),將產(chǎn)生共振,加劇車輛動力傳動系統(tǒng)的扭振響應(yīng),在發(fā)動機(jī)輸出端與變速器之間配備雙質(zhì)量飛輪扭振減振器將有利于解決車輛動力傳動系統(tǒng)的扭振現(xiàn)象。 為探究車輛動力傳動系統(tǒng)各部分動力學(xué)參數(shù)對動態(tài)輸出響應(yīng)的影響,實(shí)現(xiàn)雙質(zhì)量飛輪的合理匹配以達(dá)到扭振減振的目的,論文對車輛動力傳動系統(tǒng)扭振及雙質(zhì)量飛輪的國內(nèi)外發(fā)展現(xiàn)狀及趨勢進(jìn)行了研究,并在與企業(yè)合作研發(fā)的基礎(chǔ)上,對整車系統(tǒng)的發(fā)動機(jī)、雙質(zhì)量飛輪、變速器及驅(qū)動輪等各單元進(jìn)行了詳細(xì)的研究與分析,建立了基于單元分析的車輛動力傳動系扭振減振模型,并對系統(tǒng)固有特性進(jìn)行了計(jì)算,表明了引入雙質(zhì)量飛輪后能有效地調(diào)節(jié)系統(tǒng)固有頻率范圍,詳細(xì)地分析了系統(tǒng)各單元?jiǎng)恿W(xué)參數(shù)對系統(tǒng)固有特性的靈敏度影響,揭示了系統(tǒng)參數(shù)與系統(tǒng)固有特性的內(nèi)在聯(lián)系,為系統(tǒng)各單元?jiǎng)恿W(xué)參數(shù)的合理匹配優(yōu)化和新型雙質(zhì)量飛輪扭振減振器提供了設(shè)計(jì)依據(jù)和理論指導(dǎo),并在機(jī)械系統(tǒng)動力學(xué)軟件ADAMS中進(jìn)行了受迫振動仿真分析,驗(yàn)證了引入雙質(zhì)量飛輪能有效地衰減系統(tǒng)輸入激勵(lì)的扭振響應(yīng)。論文的主要研究工作包括以下幾個(gè)部分: ①在車輛結(jié)構(gòu)及功能基礎(chǔ)上,將整車系統(tǒng)進(jìn)行拆分為不同的子單元(發(fā)動機(jī)單元、雙質(zhì)量飛輪扭振減振器單元、變速器單元等)并建立相應(yīng)的等效單元扭振力學(xué)模型,通過一定的準(zhǔn)則,,將各單元組合成整車系統(tǒng)扭振減振分析模型,從而獲得基于單元分析的車輛動力傳動系統(tǒng)模型。對發(fā)動機(jī)單元,建立單缸活塞-曲柄連桿的動力學(xué)模型及其等效力學(xué)模型,經(jīng)相位組合后得到任意多缸發(fā)動機(jī)的動力輸出特性,以作為輸入激勵(lì)進(jìn)行動力傳動系統(tǒng)的動態(tài)響應(yīng)分析。 ②在整車系統(tǒng)扭振模型的基礎(chǔ)上,建立相應(yīng)的自由扭振方程,對系統(tǒng)固有頻率進(jìn)行求解計(jì)算,得出系統(tǒng)一階共振轉(zhuǎn)速低于發(fā)動機(jī)怠速轉(zhuǎn)速,而二階共振轉(zhuǎn)速高于發(fā)動機(jī)最高轉(zhuǎn)速,從而將系統(tǒng)共振轉(zhuǎn)速隔離在發(fā)動機(jī)工作轉(zhuǎn)速之外,并詳細(xì)探討了系統(tǒng)各子單元的等效轉(zhuǎn)動慣量、等效扭轉(zhuǎn)剛度動力學(xué)參數(shù)變化對系統(tǒng)固有特性的影響,揭示出了系統(tǒng)各動力學(xué)參數(shù)與系統(tǒng)固有特性的內(nèi)在聯(lián)系。 ③在ADAMS中建立車輛系統(tǒng)的扭振減振模型虛擬樣機(jī),引入阻尼參數(shù),加載簡諧分析后的激勵(lì)轉(zhuǎn)矩表達(dá)式并進(jìn)行受迫振動仿真分析,表明了系統(tǒng)輸入激勵(lì)的角速度扭振響應(yīng)經(jīng)過雙質(zhì)量飛輪后有較好的衰減。
[Abstract]:The vehicle power transmission system, which consists of engine, clutch, transmission and drive wheel, is a complex nonlinear coupling system with both continuous mass and concentrated mass. When the input excitation frequency is close to or equal to the natural frequency of the system, resonance will occur, which will aggravate the torsional vibration response of the vehicle power transmission system. A double mass flywheel torsional vibration absorber between the engine output end and the transmission will be helpful to solve the torsional vibration phenomenon of the vehicle power transmission system. In order to investigate the effect of dynamic parameters of vehicle power transmission system on dynamic output response, and to realize the reasonable matching of double mass flywheels to achieve the purpose of torsional vibration damping, This paper studies the development status and trend of torsional vibration and double mass flywheel in vehicle power transmission system at home and abroad, and on the basis of research and development with enterprises, the engine and double mass flywheel of the whole vehicle system are studied. The transmission and drive wheel are studied and analyzed in detail. The torsional vibration damping model of vehicle power transmission system based on element analysis is established, and the inherent characteristics of the system are calculated. It is shown that the natural frequency range of the system can be adjusted effectively by introducing the double mass flywheel. The influence of the dynamic parameters of the system on the inherent characteristics of the system is analyzed in detail, and the inherent relationship between the system parameters and the inherent characteristics of the system is revealed. It provides the design basis and theoretical guidance for the reasonable matching and optimization of the dynamic parameters of each unit of the system and a new type of twisting vibration absorber with double mass flywheels. The forced vibration simulation analysis is carried out in the mechanical system dynamics software ADAMS. It is verified that the double mass flywheel can effectively attenuate the torsional vibration response of the input excitation of the system. The main research work includes the following parts: On the basis of the structure and function of the vehicle, the whole vehicle system is divided into different sub-units (engine unit, twin-mass flywheel torsional vibration absorber unit, transmission unit, etc.) and the corresponding equivalent unit torsional vibration mechanics model is established. According to certain criteria, each unit is combined into an analysis model of torsional vibration and vibration of the whole vehicle system, and the model of vehicle power transmission system based on element analysis is obtained. For the engine unit, the dynamic model and equivalent mechanical model of a single cylinder piston and crank connecting rod are established. After phase combination, the dynamic output characteristics of any multi-cylinder engine are obtained. The dynamic response of power transmission system is analyzed as input excitation. 2 based on the torsional vibration model of the whole vehicle system, the corresponding free torsional vibration equation is established, and the natural frequency of the system is solved and calculated. It is concluded that the first order resonance speed of the system is lower than the idle speed of the engine. The second order resonance speed is higher than the maximum engine speed, so the system resonance speed is isolated from the engine working speed, and the equivalent moment of inertia of each sub-unit of the system is discussed in detail. The influence of the dynamic parameters of equivalent torsional stiffness on the natural characteristics of the system is discussed, and the relationship between the dynamic parameters of the system and the inherent characteristics of the system is revealed. (3) the virtual prototype of torsional vibration damping model of vehicle system is established in ADAMS, the damping parameter is introduced, the expression of excitation torque after simple harmonic analysis is loaded, and the forced vibration simulation analysis is carried out. It is shown that the torsional vibration response of the system excited by the input angular velocity has a good attenuation after passing through the double mass flywheel.
【學(xué)位授予單位】:重慶大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2014
【分類號】:U463.2;TB535
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 李博敏,許秀輝;軸的扭轉(zhuǎn)振動分析[J];沈陽航空工業(yè)學(xué)院學(xué)報(bào);1999年02期
2 邵毅敏;張奎;李小俠;傅俊慶;;基于靈敏度分析的車輛傳動系統(tǒng)扭振分析及仿真[J];長沙理工大學(xué)學(xué)報(bào)(自然科學(xué)版);2009年03期
3 李偉;史文庫;龍巖;權(quán)彥;;DMF-CS型扭振減振器剛度匹配設(shè)計(jì)[J];吉林大學(xué)學(xué)報(bào)(工學(xué)版);2009年S1期
4 李春明;魏來生;江磊;;四輪驅(qū)動車輛動力傳動系統(tǒng)的扭振分析計(jì)算[J];機(jī)械傳動;2009年05期
5 宋立權(quán);李亮;尹玉明;羅書明;田宏艷;樊照鐘;;基于形狀約束的雙質(zhì)量飛輪設(shè)計(jì)理論研究[J];機(jī)械工程學(xué)報(bào);2012年01期
6 宋立權(quán),王偉;摩托車發(fā)動機(jī)平衡慣性力橢圓方程研究[J];內(nèi)燃機(jī)工程;2005年04期
7 向建華;廖日東;張衛(wèi)正;;基于靈敏度分析的內(nèi)燃機(jī)曲軸扭振系統(tǒng)結(jié)構(gòu)動力學(xué)修改[J];內(nèi)燃機(jī)工程;2007年06期
8 李震,桂長林,孫軍;內(nèi)燃機(jī)曲軸軸系振動分析研究的現(xiàn)狀、討論與展望[J];內(nèi)燃機(jī)學(xué)報(bào);2002年05期
9 陳奎孚,彭紅濤,焦群英;復(fù)雜傳動軸系扭振的遞歸傳遞矩陣法[J];農(nóng)業(yè)工程學(xué)報(bào);1999年02期
10 呂振華,馮振東;汽車離合器扭振減振器設(shè)計(jì)方法探討[J];汽車工程;1992年04期
本文編號:1863611
本文鏈接:http://sikaile.net/guanlilunwen/gongchengguanli/1863611.html