三維可視化環(huán)境下地下礦爆破設(shè)計優(yōu)化方法及應(yīng)用研究
本文選題:三維可視化 + 實體建模 ; 參考:《湘潭大學(xué)》2017年碩士論文
【摘要】:在礦山企業(yè)進(jìn)行采礦作業(yè)的一系列采礦工藝中,爆破有著重要的地位。爆破的效果直接影響著礦山生產(chǎn)過程中一系列后續(xù)工藝的效率(如鏟裝、運輸、機械破碎等)和總的經(jīng)濟(jì)效益,也影響著礦山的生產(chǎn)安全。隨著三維可視化技術(shù)及實體建模理論的飛速發(fā)展,地下采場的內(nèi)部結(jié)構(gòu)已經(jīng)十分清晰,三維可視化環(huán)境下的地下礦爆破技術(shù)也開始逐漸發(fā)展。本文包含如下幾個方面:三維地質(zhì)實體建模相關(guān)理論及關(guān)鍵技術(shù)、地下爆破設(shè)計體系結(jié)構(gòu)、地下扇形孔爆破優(yōu)化設(shè)計和地下平行孔爆破優(yōu)化設(shè)計。其中,三維地質(zhì)實體建模相關(guān)理論及關(guān)鍵技術(shù)包括地下爆破的三維實體功能要求和表面模型、塊段模型、巷道模型等地下礦三維數(shù)據(jù)模型的建模技術(shù);地下爆破設(shè)計體系結(jié)構(gòu)分析了地下爆破設(shè)計系統(tǒng),介紹了系統(tǒng)開發(fā)的環(huán)境與平臺、系統(tǒng)體系結(jié)構(gòu)和系統(tǒng)模塊;地下扇形孔爆破優(yōu)化設(shè)計介紹了扇形孔爆破設(shè)計流程與扇形孔的數(shù)據(jù)管理形式,提出了控制礦體邊界損失貧化的方法,該方法根據(jù)三維礦體模型獲取礦體邊界處的礦巖分界線,確定爆破后沖線的若干采樣位置后,分別計算不同采樣位置下的礦石的損失率和貧化率,再根據(jù)損失貧化要求確定地下爆破設(shè)計中爆破后沖線的目標(biāo)位置,并用工程實例說明其可行性,最后以北m:河礦山為例,實現(xiàn)了地下礦扇形孔的爆破方案;地下平行孔爆破優(yōu)化設(shè)計介紹了平行孔爆破設(shè)計流程和基于紅黑樹的炮孔數(shù)據(jù)管理,介紹了平行孔的幾種布孔方式及布孔流程,實現(xiàn)了測試直線與實體表面相交的算法,該方法根據(jù)分離軸理論快速檢測兩個OBB盒是否相交,從而判斷炮孔與孔底網(wǎng)面是否相交,以修正平行孔孔底位置,最后以冬瓜山礦床為例,進(jìn)行了地下平行孔爆破方案的設(shè)計。地下礦爆破設(shè)計的優(yōu)化研究成果,提高了爆破設(shè)計數(shù)據(jù)的準(zhǔn)確性,也提高了工程師、礦山技術(shù)人員的工作效率,具有較好的實用價值與廣闊的應(yīng)用前景。
[Abstract]:Blasting plays an important role in a series of mining processes in mining enterprises. The effect of blasting directly affects the efficiency of a series of subsequent processes (such as shoveling, transportation, mechanical crushing, etc.) and the overall economic benefits in the process of mine production, and also affects the safety of mine production. With the rapid development of 3D visualization technology and solid modeling theory, the internal structure of underground stope has been very clear, and the underground mine blasting technology has been gradually developed in 3D visual environment. This paper includes the following aspects: 3D geological entity modeling theory and key technologies, underground blasting design system structure, underground fan hole blasting optimization design and underground parallel hole blasting optimization design. Among them, the relevant theories and key technologies of 3D geological entity modeling include 3D solid function requirement of underground blasting and modeling technology of surface model, block model, roadway model and other 3D data model of underground mine. The underground blasting design system is analyzed, and the environment and platform of the system development, system architecture and system module are introduced. The optimum design of underground fan hole blasting introduces the design flow of sector hole blasting and the data management form of sector hole, and puts forward a method to control the loss and dilution of ore body boundary. According to the 3D orebody model, the ore rock boundary line at the ore body boundary is obtained by this method. After determining some sampling positions of the blasting punching line, the loss rate and dilution rate of the ore at different sampling positions are calculated respectively, and then the target position of the blasting post-punching line in the underground blasting design is determined according to the loss dilution requirements. Finally, the blasting scheme of fan hole in underground mine is realized, and the design flow of parallel hole blasting and the data management of blasting hole based on red-black tree are introduced. This paper introduces several methods and flow chart of parallel hole layout, and realizes the algorithm of measuring the intersection of straight line and solid surface. According to the separation axis theory, the method can quickly detect the intersection of two OBB boxes and judge whether the hole and the bottom mesh of the hole are intersecting. Taking the position of parallel hole bottom modified and taking the Dongguashan deposit as an example, the design of underground parallel hole blasting scheme is carried out. The optimized research results of blasting design in underground mines have improved the accuracy of blasting design data and the working efficiency of engineers and mine technicians. It has good practical value and broad application prospect.
【學(xué)位授予單位】:湘潭大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TD235
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 王悅財;;礦石開采過程中損失與貧化的應(yīng)用[J];科技創(chuàng)新與應(yīng)用;2017年12期
2 王李管;陳鑫;;數(shù)字礦山技術(shù)進(jìn)展[J];中國有色金屬學(xué)報;2016年08期
3 孫文勇;陳星明;譚寶會;張志貴;;復(fù)雜礦體條件礦石損失貧化原因及對策[J];遼寧工程技術(shù)大學(xué)學(xué)報(自然科學(xué)版);2013年10期
4 靳玉萍;蘇丹丹;;基于TIN的三維地質(zhì)建模研究[J];計算機工程;2012年07期
5 周偉永;;中孔拉槽爆破優(yōu)化設(shè)計[J];新疆有色金屬;2012年01期
6 胡貴如;;緩傾斜中厚礦體安全回采和降低損失貧化指標(biāo)的實踐[J];湖南有色金屬;2010年02期
7 高慶;姜凡;;紅黑樹算法及其應(yīng)用[J];軟件導(dǎo)刊;2008年09期
8 畢林;王李管;陳建宏;馮興隆;;基于八叉樹的復(fù)雜地質(zhì)體塊段模型建模技術(shù)[J];中國礦業(yè)大學(xué)學(xué)報;2008年04期
9 羅先偉;;92~#礦體復(fù)合采礦法損失貧化預(yù)測與控制[J];采礦技術(shù);2006年04期
10 朱合華;張芳;葉勇庚;;基于鉆孔數(shù)據(jù)重構(gòu)地層周圍表面模型算法[J];計算機工程與應(yīng)用;2006年25期
相關(guān)博士學(xué)位論文 前1條
1 譚正華;三維可視化環(huán)境下采礦設(shè)計與生產(chǎn)規(guī)劃關(guān)鍵技術(shù)研究[D];中南大學(xué);2010年
相關(guān)碩士學(xué)位論文 前7條
1 李國明;扎哈淖爾露天煤礦巖層爆破參數(shù)優(yōu)化研究[D];內(nèi)蒙古科技大學(xué);2015年
2 馬偉杰;馬路坪礦地下開采生產(chǎn)爆破孔網(wǎng)參數(shù)優(yōu)化研究[D];武漢工程大學(xué);2014年
3 任娜;基于八叉樹的復(fù)雜礦體塊體模型構(gòu)建方法研究[D];中國地質(zhì)大學(xué);2012年
4 冀曉偉;露天礦臺階爆破三維數(shù)字化設(shè)計系統(tǒng)研究[D];西安建筑科技大學(xué);2011年
5 黃忠;地質(zhì)三維建模與可視化技術(shù)的研究與應(yīng)用[D];合肥工業(yè)大學(xué);2008年
6 龔元翔;銅廠銅礦三維可視化建模及露天境界優(yōu)化技術(shù)研究[D];中南大學(xué);2008年
7 程良奎;地下礦山中深孔爆破設(shè)計專家系統(tǒng)研究[D];武漢科技大學(xué);2004年
,本文編號:1839337
本文鏈接:http://sikaile.net/guanlilunwen/gongchengguanli/1839337.html