通過(guò)磁控濺射ZnO:Al薄膜中的缺陷調(diào)控薄膜的光學(xué)和電學(xué)性能及相關(guān)物理機(jī)制的研究
本文選題:磁控濺射 + 氧化鋅薄膜; 參考:《中國(guó)科學(xué)技術(shù)大學(xué)》2016年博士論文
【摘要】:ZnO基薄膜從被發(fā)現(xiàn)起便受到廣泛關(guān)注。其寬帶隙,高激子復(fù)合能,儲(chǔ)量豐富以及價(jià)格低廉等特性令其有著廣闊的應(yīng)用前景。目前制約ZnO基薄膜應(yīng)用的主要因素有:(1)如何控制缺陷以及(2)如何制備穩(wěn)定的p型ZnO基薄膜。前者影響ZnO基薄膜的光學(xué)和電學(xué)性能,比如A1摻雜ZnO薄膜的載流子濃度和遷移率目前與ITO相比仍然有一定差距;而后者則影響著ZnO基同質(zhì)結(jié)的制備,目前報(bào)道的結(jié)果都差強(qiáng)人意。突破這兩個(gè)瓶頸勢(shì)必會(huì)讓ZnO基薄膜的應(yīng)用領(lǐng)域迅速擴(kuò)展。磁控濺射方法是適合工業(yè)化生產(chǎn)的先進(jìn)薄膜制備技術(shù)。通過(guò)磁控濺射可以制備大面積的致密薄膜,且薄膜附著力高、可重復(fù)性好。但另一方面,磁控濺射方法在制備氧化物薄膜時(shí),高能離子對(duì)薄膜的轟擊會(huì)在薄膜中引入豐富的缺陷并影響薄膜的微結(jié)構(gòu)。對(duì)于ZnO基半導(dǎo)體薄膜材料,薄膜的電學(xué)性質(zhì)和光學(xué)性質(zhì)與材料的缺陷和微結(jié)構(gòu)密切相關(guān)。因此,調(diào)控ZnO基薄膜材料中的缺陷和微結(jié)構(gòu)以獲得高性能的ZnO基薄膜具有重要的科學(xué)研究意義和應(yīng)用背景。本文的工作主要以透明導(dǎo)電膜和P型ZnO為背景,以Al摻雜和Al-N共摻雜ZnO為研究對(duì)象,以對(duì)ZnO薄膜中缺陷的調(diào)控為手段,研究了磁控濺射方法制備的ZnO基薄膜材料的光學(xué)和電學(xué)性質(zhì)的關(guān)鍵影響因素及物理機(jī)制,主要取得了以下一些研究成果:1.系統(tǒng)研究了氫氣退火對(duì)磁控濺射AZO薄膜中缺陷演化及光學(xué)和電學(xué)性能的影響。HRTEM測(cè)試結(jié)果顯示在~300℃下退火后的薄膜晶格內(nèi)部的部分位錯(cuò)與層錯(cuò)數(shù)量會(huì)明顯增加,打亂薄膜(002)晶面的周期性而使其晶粒尺寸減小;在高于500℃的溫度下退火可以有效移除部分位錯(cuò)和層錯(cuò),但同時(shí)會(huì)導(dǎo)致大量的鋅空位(VZn)缺陷的產(chǎn)生。AZO薄膜在~500℃下退火后其內(nèi)部的與氧有關(guān)的缺陷(如氧填隙Oi,晶界吸附氧OGB等)被大幅移除,使其載流子濃度、遷移率以及可見光波段的透過(guò)率都明顯上升。在高于550℃的溫度下退火將會(huì)導(dǎo)致嚴(yán)重的氫氣刻蝕效應(yīng),使得大量AlZn施主被VZn鈍化。此外,我們還在對(duì)樣品熱分析結(jié)果中發(fā)現(xiàn)了一個(gè)反常的吸熱過(guò)程,并在氫氣氣氛下實(shí)時(shí)電阻率測(cè)量中發(fā)現(xiàn)了電阻率隨溫度的反常上升現(xiàn)象;谶@兩個(gè)現(xiàn)象,我們討論了Oi與Al施主和部分位錯(cuò)在氫氣退火時(shí)的相互作用機(jī)制。我們的結(jié)果表明,在~500℃下退火后的AZO薄膜電阻率低至4.48×10-4Ωcm,而可見光波段透過(guò)率超過(guò)90%,已經(jīng)可以滿足作為透明導(dǎo)電薄膜在某些領(lǐng)域的應(yīng)用條件。2.發(fā)現(xiàn)了磁控濺射AZO薄膜中Oi誘導(dǎo)的有效摻雜效應(yīng)。初始薄膜中的Oi濃度可以通過(guò)調(diào)節(jié)濺射時(shí)的氧分壓有效控制。盡管Al施主會(huì)暫時(shí)被Oi鈍化,借助后續(xù)的氫氣退火可以將Oi移除從而重新激活A(yù)lZn施主。測(cè)試結(jié)果顯示Oi濃度最高的初始薄膜在氫氣退火后有著最高的載流子濃度。實(shí)驗(yàn)結(jié)果表明,基于Oi誘導(dǎo)的有效摻雜效應(yīng),Al的有效摻雜濃度提高了~10%。我們提出盡管初始薄膜中Oi會(huì)鈍化Al施主,但同時(shí)它們也有利于原子Al在晶格中的分布,促進(jìn)AlZn施主缺陷的形成,從而增加氫氣退火后薄膜中Al的有效摻雜。這種Oi誘導(dǎo)的有效摻雜效應(yīng)為提高半導(dǎo)體材料的載流子濃度提供了新的思路,理論上也適用于其他透明導(dǎo)電氧化物薄膜材料,比如ITO。3.研究了通過(guò)濺射過(guò)程中摻H削弱濺射時(shí)高能氧負(fù)離子轟擊影響的可行性。結(jié)果證明,濺射過(guò)程中摻H可以有效抑制薄膜中與O相關(guān)缺陷(Oi,Vo,OGB)的產(chǎn)生,削弱不均勻分布的氧負(fù)離子轟擊對(duì)于AZO薄膜的影響,改善薄膜的光學(xué)和電學(xué)性能的空間分布。4.開發(fā)了利用自由基輔助磁控濺射方法制備p型Al-N共摻雜ZnO薄膜的技術(shù)。通過(guò)獨(dú)立的射頻源將N2轉(zhuǎn)化成活性更高的N自由基并精確地控制濺射參數(shù),獲得了遷移率高達(dá)3.11 cm2/Vs的p型Al-N共摻雜ZnO薄膜,且在大氣狀態(tài)下存放一個(gè)月后仍然能保持p型導(dǎo)電特性。這證明通過(guò)磁控濺射制備大面積的p型ZnO基薄膜是可行的。
[Abstract]:ZnO based films have attracted wide attention from their discovery. Their wide band gap, high exciton composite energy, rich reserves and low price have broad application prospects. The main factors restricting the application of ZnO based films are: (1) how to control defects and (2) how to prepare stable P ZnO based thin films. The former affects ZnO based films. Optical and electrical properties, such as the carrier concentration and mobility of A1 doped ZnO films, still have a certain gap compared with ITO, and the latter affects the preparation of ZnO based homogeneity. The results of the present report are poor. The breakthrough of these two bottlenecks will make the ZnO based films expand rapidly. The magnetron sputtering method is suitable. The advanced film preparation technology produced by industrial production can prepare large area dense thin films by magnetron sputtering, with high adhesion and reproducibility. On the other hand, when the oxide film is prepared by magnetron sputtering, the bombardment of high energy ions on the film will lead to a rich defect in the film and influence the microstructure of the thin film. For Z The electrical properties and optical properties of nO based semiconductor thin film are closely related to the defects and microstructures of the materials. Therefore, it is of great scientific significance and application background to control the defects and microstructures in the ZnO based thin film materials to obtain high performance ZnO based films. The main work of this paper is the transparent conductive film and the P ZnO as the back. The key influence factors and physical mechanism of the optical and electrical properties of ZnO based thin film materials prepared by magnetron sputtering are studied with Al doping and Al-N Co doped ZnO as the research object. The main influencing factors and physical mechanism of the optical and electrical properties of the ZnO based thin film materials prepared by magnetron sputtering are studied. The main results are as follows: 1. the hydrogen annealing of the magnetron sputtering AZO thin is studied systematically. The influence of the defect evolution and optical and electrical properties in the membrane.HRTEM test results show that the partial dislocation and the number of stacking faults in the thin film lattice annealed at 300 centigrade will obviously increase, disrupt the periodicity of the film (002) and reduce the grain size, and the partial dislocation and layer can be effectively removed at a temperature above 500 degrees C. It is wrong, but it also causes a large number of zinc vacancy (VZn) defects to produce.AZO films at 500 degrees centigrade, and the internal oxygen related defects (such as oxygen gap Oi, grain boundary adsorbed oxygen OGB, etc.) have been greatly removed, so that the carrier concentration, mobility and the penetration rate in the visible light band are obviously increased. The annealing will be annealed at a temperature above 550 degrees C. A large number of AlZn donors were passivated by VZn. In addition, we also found an anomalous endothermic process in the thermal analysis of the samples, and the anomalous rise of resistivity with temperature was found in the real time resistivity measurement under hydrogen atmosphere. Based on these two phenomena, we discussed the donor of Oi and Al. Our results show that the resistivity of AZO films annealed at 500 C is low to 4.48 x 10-4 Omega cm, and the transmittance of visible light bands is over 90%, which can satisfy the application of transparent conductive thin film in some fields by.2. discovery of Oi induced by magnetron sputtering AZO film. The effective doping effect. The Oi concentration in the initial film can be effectively controlled by adjusting the oxygen partial pressure at the sputtering. Although the Al donor is temporarily passivated by Oi, the Oi can be removed by subsequent hydrogen annealing to reactivate the AlZn donor. The test results show that the highest Oi concentration of the initial film has the highest carrier concentration after the annealing of hydrogen. The experimental results show that, based on the effective doping effect induced by Oi, the effective doping concentration of Al is increased to 10%.. We suggest that although Oi will passivate Al donor in the initial film, they also benefit the distribution of atomic Al in the lattice, promote the formation of AlZn donor defects, and increase the effective doping of Al in the thin film after hydrogen annealing. The effective doping effect induced by Oi provides a new idea to improve the carrier concentration of semiconductor materials. In theory, it is also suitable for other transparent conductive oxide film materials. For example, ITO.3. studies the feasibility of using H to weaken the impact of high energy oxygen ion bombardment during sputtering. The results show that the doping of H can be used in the sputtering process. The production of O related defects (Oi, Vo, OGB) in the film is effectively suppressed, and the effect of negative oxygen ion bombardment on the AZO film is weakened, and the spatial distribution of the optical and electrical properties of the film is improved. The technology for the preparation of P type Al-N Co doped ZnO thin films by free radical Assisted Magnetron sputtering is developed. A independent RF source is used for N2. It is converted into a higher active N radical and accurately controlling the sputtering parameters. The P Al-N Co doped ZnO film with a high mobility of 3.11 cm2/Vs is obtained, and the P type conductive property can still be maintained after a month in the atmosphere. It is proved that it is feasible to prepare a large area of P type ZnO based thin film by magnetron sputtering.
【學(xué)位授予單位】:中國(guó)科學(xué)技術(shù)大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2016
【分類號(hào)】:TB383.2
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 付江民;涂層與薄膜[J];材料保護(hù);2000年12期
2 肖劍榮;蔣愛華;;氮化銅薄膜的研究[J];材料導(dǎo)報(bào);2009年21期
3 馬春雨,李智,張慶瑜;二氧化鋯?wèn)沤橘|(zhì)薄膜光學(xué)及電學(xué)特性研究[J];功能材料;2004年04期
4 張為權(quán);單軸晶體薄膜的光學(xué)隧道效益(英文)[J];浙江絲綢工學(xué)院學(xué)報(bào);1997年03期
5 李云;王六定;;摻雜對(duì)氧化鈦薄膜光學(xué)性能的影響[J];材料工程;2008年07期
6 徐世友,祁英昆,張溪文,韓高榮;BP_xN_(1-x)薄膜的制備及磷元素對(duì)其光學(xué)能隙的影響[J];材料科學(xué)與工程學(xué)報(bào);2003年03期
7 劉雄飛;周昕;;氮摻雜氟化非晶碳薄膜光學(xué)性質(zhì)的研究[J];材料科學(xué)與工程學(xué)報(bào);2006年04期
8 郭培濤;薛亦渝;張光勇;王漢華;馬中杰;;氧化鉭薄膜表面形貌和光學(xué)性能的研究[J];真空;2007年05期
9 張峗;沈悅;顧峰;張建成;王林軍;夏義本;;摻雜離子對(duì)介孔TiO_2薄膜光學(xué)性能的影響[J];光學(xué)學(xué)報(bào);2010年06期
10 陳智穎,俞躍輝,趙建平,王曦,周祖堯,楊石奇,柳襄懷,施天生;真空磁過(guò)濾弧沉積碳氮薄膜的研究[J];功能材料與器件學(xué)報(bào);1997年01期
相關(guān)會(huì)議論文 前10條
1 馬孜;肖琦;姚德武;;薄膜光學(xué)監(jiān)控信號(hào)的數(shù)字信號(hào)處理[A];2004年光學(xué)儀器研討會(huì)論文集[C];2004年
2 張為權(quán);;雙軸晶體薄膜光學(xué)隧道效應(yīng)[A];'99十一省(市)光學(xué)學(xué)術(shù)會(huì)議論文集[C];1999年
3 何文彥;程鑫彬;馬彬;丁濤;葉曉雯;張錦龍;張艷云;焦宏飛;;界面連續(xù)性對(duì)薄膜節(jié)瘤損傷特性的影響研究[A];中國(guó)光學(xué)學(xué)會(huì)2011年學(xué)術(shù)大會(huì)摘要集[C];2011年
4 胡小鋒;薛亦渝;郭愛云;;離子輔助蒸發(fā)TixOy制備氧化鈦薄膜及特性[A];2005'全國(guó)真空冶金與表面工程學(xué)術(shù)會(huì)議論文集[C];2005年
5 王賀權(quán);沈輝;巴德純;汪保衛(wèi);聞立時(shí);;溫度對(duì)直流反應(yīng)磁控濺射制備TiO2薄膜的光學(xué)性質(zhì)的影響[A];2005'全國(guó)真空冶金與表面工程學(xué)術(shù)會(huì)議論文集[C];2005年
6 陳凱;崔明啟;鄭雷;趙屹東;;遺傳算法在軟X射線薄膜反射率多參數(shù)擬合中的應(yīng)用[A];第13屆全國(guó)計(jì)算機(jī)、網(wǎng)絡(luò)在現(xiàn)代科學(xué)技術(shù)領(lǐng)域的應(yīng)用學(xué)術(shù)會(huì)議論文集[C];2007年
7 尚林;趙君芙;張華;梁建;許并社;;不同摻雜元素對(duì)GaN薄膜影響的研究進(jìn)展[A];2011中國(guó)材料研討會(huì)論文摘要集[C];2011年
8 彭曉峰;宋力昕;樂軍;胡行方;;硅碳氮薄膜的納米硬度研究[A];第四屆中國(guó)功能材料及其應(yīng)用學(xué)術(shù)會(huì)議論文集[C];2001年
9 張海芳;杜丕一;翁文劍;韓高榮;;Fe~(3+)離子敏感Ge-Sb-Se-Fe(Ni)系薄膜的摻雜性能研究[A];中國(guó)真空學(xué)會(huì)第六屆全國(guó)會(huì)員代表大會(huì)暨學(xué)術(shù)會(huì)議論文摘要集[C];2004年
10 魏?jiǎn)㈢?肖波;葉龍強(qiáng);江波;;Sol-Gel法制備納米二氧化鈦功能性薄膜[A];第七屆中國(guó)功能材料及其應(yīng)用學(xué)術(shù)會(huì)議論文集(第5分冊(cè))[C];2010年
相關(guān)重要報(bào)紙文章 前1條
1 記者劉其丕 李曉飛;天津薄膜光學(xué)重點(diǎn)實(shí)驗(yàn)室成立[N];中國(guó)有色金屬報(bào);2010年
相關(guān)博士學(xué)位論文 前10條
1 馬蕾;Si基納米薄膜光伏材料的制備、結(jié)構(gòu)表征與光電特性[D];河北大學(xué);2014年
2 李萬(wàn)俊;N-X共摻ZnO薄膜p型導(dǎo)電的形成機(jī)制與穩(wěn)定性研究[D];重慶大學(xué);2015年
3 曾勇;ZnO薄膜光電性能調(diào)控技術(shù)研究[D];北京工業(yè)大學(xué);2015年
4 賀利軍;電子束蒸發(fā)傾斜沉積氧化鋁薄膜結(jié)構(gòu)與性質(zhì)研究[D];電子科技大學(xué);2014年
5 孫喜桂;硒化鉛薄膜的磁控濺射制備及性能研究[D];北京科技大學(xué);2016年
6 張玉杰;Sn摻雜In_2O_3和In_2O_3薄膜的電子輸運(yùn)性質(zhì)研究[D];天津大學(xué);2015年
7 王朝勇;減反射和自清潔功能薄膜的制備與表征[D];鄭州大學(xué);2016年
8 王藝程;GHz波段軟磁薄膜的性能調(diào)控及器件集成技術(shù)[D];電子科技大學(xué);2016年
9 顧志清;氮化鉿和氮化鉿鉭薄膜的結(jié)構(gòu)辨認(rèn)與光電性質(zhì)研究[D];吉林大學(xué);2016年
10 彭釋;大氣壓DBD等離子體沉積SiO_xC_yH_z結(jié)構(gòu)薄膜及其光學(xué)性能研究[D];東華大學(xué);2017年
相關(guān)碩士學(xué)位論文 前10條
1 閆偉超;α-NbZnSnO薄膜的制備與表征及其在薄膜場(chǎng)效應(yīng)晶體管中的應(yīng)用[D];浙江大學(xué);2015年
2 王新巧;LPCVD技術(shù)沉積的ZnO薄膜及其特性研究[D];河北大學(xué);2015年
3 熊玉寶;超親水TiO_2透明薄膜的制備及其光催化性能研究[D];南京信息工程大學(xué);2015年
4 柳林杰;Al、N摻雜ZnO薄膜的制備及其ZnO第一性原理計(jì)算[D];燕山大學(xué);2015年
5 崔麗;低溫溶劑熱法制備ZnO薄膜及性能研究[D];燕山大學(xué);2015年
6 魏穎娜;基于非水解sol-gel法的還原氮化技術(shù)制備TiN薄膜[D];河北聯(lián)合大學(xué);2014年
7 張帆;溫度相關(guān)的二氧化鈦及鋯鈦酸鉛薄膜的橢圓偏振光譜研究[D];復(fù)旦大學(xué);2014年
8 張清清;能量過(guò)濾磁控濺射技術(shù)ITO薄膜的制備及性能優(yōu)化[D];鄭州大學(xué);2015年
9 冀亞欣;In_2S_3薄膜的磁控濺射法制備及性能研究[D];西南交通大學(xué);2015年
10 劉倩;Cu-Zn-Sn硫族化物薄膜吸收層的共濺射制備工藝及性能研究[D];內(nèi)蒙古大學(xué);2015年
,本文編號(hào):1838822
本文鏈接:http://sikaile.net/guanlilunwen/gongchengguanli/1838822.html