天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當前位置:主頁 > 管理論文 > 工程管理論文 >

高分辨率遙感圖像災區(qū)建筑物檢測

發(fā)布時間:2018-04-25 05:30

  本文選題:建筑物檢測 + 圖像分割。 參考:《數(shù)據(jù)采集與處理》2017年02期


【摘要】:在遙感圖像中,災區(qū)建筑物的檢測對災情獲取和災后應急救援具有重要意義。針對災區(qū)高分辨率遙感圖像中建筑物檢測的問題,提出了一種改進的基于形態(tài)學特征的多方向和多尺度分割方法,以實現(xiàn)災區(qū)建筑物的自動化檢測。首先將形態(tài)學算子的重建、粒度和方向等性質(zhì)整合到建筑物的亮度、大小和對比度等特征中,對遙感圖像進行初步的分割并提取高亮和高對比度的建筑物,然后結(jié)合圖像的區(qū)域邊緣信息,進一步提取潛在的建筑物。實驗結(jié)果表明,所提方法對災區(qū)高分辨率圖像中的建筑目標有較高的檢測率和較低的誤檢率。
[Abstract]:In remote sensing images, the detection of buildings in disaster areas is of great significance to disaster situation acquisition and emergency rescue. In order to solve the problem of building detection in high resolution remote sensing images of disaster areas, an improved multi-direction and multi-scale segmentation method based on morphological features is proposed to realize the automatic detection of buildings in disaster-stricken areas. Firstly, the reconstruction, granularity and direction of the morphological operator are integrated into the luminance, size and contrast of the building to segment the remote sensing image and extract the high-contrast and high-contrast buildings. Then combined with the region edge information of the image, the potential buildings are further extracted. The experimental results show that the proposed method has higher detection rate and lower false detection rate for building targets in high resolution images of disaster areas.
【作者單位】: 南京理工大學計算機科學與工程學院;
【基金】:國家自然科學基金(61003108/61371168)資助項目 公安部應用創(chuàng)新計劃(2013YYCXGASS097)資助項目
【分類號】:TP751

【相似文獻】

中國期刊全文數(shù)據(jù)庫 前3條

1 Ejaz Hussain;Serkan Ural;KyoHyouk Kim;Chiung-Shiuan Fu;Jie Shan;劉明眾;;基于2010年太子港震后GeoEye-1影像、激光雷達數(shù)據(jù)的建筑物提取和瓦礫制圖[J];地殼構(gòu)造與地殼應力;2012年01期

2 馮青松;雷曉燕;伍明輝;;地鐵運行列車引起建筑物低頻振動的數(shù)值分析[J];鐵道科學與工程學報;2007年05期

3 ;[J];;年期

,

本文編號:1799984

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/guanlilunwen/gongchengguanli/1799984.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶96e71***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com