Fe基高頻軟磁薄膜的制備及微波特性研究
本文選題:脈沖激光沉積法 + 高頻軟磁薄膜; 參考:《青島大學(xué)》2017年碩士論文
【摘要】:隨著電子信息技術(shù)向高集成化、小型化、薄膜化及高頻化方向發(fā)展,越來越多的元件要求集成在更小的基片上。為了減小電子系統(tǒng)的整體尺寸和重量,發(fā)展薄膜器件無疑成為滿足要求的實用方法。微波軟磁薄膜具有良好的磁性能,如高的飽和磁化強(qiáng)度4πMs,高的磁導(dǎo)率μ和低的阻尼常數(shù)α。因此,由軟磁薄膜組成的電感器其電感將顯著增強(qiáng),并且在單片微波集成電路中所需空間大大地減少。但是,外加磁場通常具有大的重量或高的功率消耗,這在集成電路中很難滿足小型化,輕量化和低功耗的性能要求。因此,具有磁各向異性的金屬軟磁薄膜吸引了越來越多的關(guān)注。軟磁薄膜的鐵磁共振頻率fFMR主要是由其飽和磁化強(qiáng)度4πMs和面內(nèi)單軸各向異性場H_K決定的。各向異性場H_K作為外稟參量對制備條件、缺陷等比較敏感,可以更容易的提高1-2個數(shù)量級,所以軟磁薄膜的研究主要集中在提高其單軸各向異性場方面。本論文圍繞著集成電路(IC)兼容性工藝條件下,磁各向異性軟磁薄膜的制備和微波軟磁特性提高等內(nèi)容,開展了以下主要研究工作:(1)條紋陣列結(jié)構(gòu)的磁各向異性。利用脈沖激光沉積法結(jié)合光刻工藝,制備了Ni_(80)Fe_(20)連續(xù)膜和條紋膜,研究了條紋長度均為5 mm,條紋寬度分別為20μm、30μm及40μm對于Ni_(80)Fe_(20)薄膜的微結(jié)構(gòu)和單軸各向異性的影響。經(jīng)分析測試發(fā)現(xiàn):連續(xù)膜表現(xiàn)出各向同性,其鐵磁共振頻率fFMR為1.71 GHz,而條紋膜表現(xiàn)出各向異性,且條紋膜的各向異性場H_K隨著條紋寬度的減小逐漸增大,當(dāng)條紋寬度減小至20μm時,條紋膜的鐵磁共振頻率fFMR增大到2.1 GHz。所有樣品的鐵磁共振頻率fFMR和各向異性場H_K的比較表明了鐵磁共振頻率的增大歸因于Ni_(80)Fe_(20)條紋膜的形狀各向異性的增加。(2)應(yīng)力誘導(dǎo)磁各向異性。利用脈沖激光沉積法,制備了膜厚為65 nm的一系列Fe56CO24B20非晶薄膜,通過彎曲Si襯底引入壓應(yīng)力,探究了壓應(yīng)力對薄膜的疇結(jié)構(gòu)及單軸各向異性的影響。經(jīng)分析測試發(fā)現(xiàn):易磁化軸垂直于壓應(yīng)力的方向;隨著壓應(yīng)力的增大,單軸磁各向異性場H_K從54 Oe增大到191 Oe,鐵磁共振頻率相應(yīng)地從3.41 GHz增大到4.03 GHz。隨后利用磁力顯微鏡(MFM)測試發(fā)現(xiàn)具有壓應(yīng)力的薄膜其條紋疇結(jié)構(gòu)及條紋的稱度隨壓應(yīng)力的增加逐漸增強(qiáng)。進(jìn)一步的分析表明,應(yīng)力沉積薄膜的方法不僅可以提高軟磁薄膜的鐵磁共振頻率,還可以降低磁損耗。
[Abstract]:With the development of electronic information technology towards high integration, miniaturization, thin-film and high frequency, more and more components are required to be integrated on smaller substrates.In order to reduce the overall size and weight of the electronic system, the development of thin film devices is undoubtedly a practical method to meet the requirements.Microwave soft magnetic thin films have good magnetic properties, such as high saturation magnetization 4 蟺 Ms, high permeability 渭 and low damping constant 偽.Therefore, the inductance of inductors made up of soft magnetic thin films will be greatly enhanced, and the space required in monolithic microwave integrated circuits will be greatly reduced.However, the applied magnetic field usually has large weight or high power consumption, which is difficult to meet the performance requirements of miniaturization, lightweight and low power consumption in integrated circuits.Therefore, metal soft magnetic thin films with magnetic anisotropy have attracted more and more attention.The ferromagnetic resonance frequency (fFMR) of soft magnetic thin films is mainly determined by the saturation magnetization of 4 蟺 Ms and the in-plane uniaxial anisotropic field HK.As an intrinsic parameter, the anisotropic field HK is more sensitive to the preparation conditions, defects and so on, and can easily increase 1-2 orders of magnitude, so the study of soft magnetic thin films is mainly focused on improving its uniaxial anisotropic field.This thesis focuses on the preparation of magnetically anisotropic soft magnetic thin films and the improvement of microwave soft magnetic properties under the condition of IC / IC compatibility. The main research work of this thesis is as follows: 1) the magnetic anisotropy of the striped array structure.By using pulsed laser deposition and photolithography, the nippon 80 FeSP-20) continuous film and stripe film were prepared. The effects of stripe length of 5 mm, stripe width of 20 渭 m ~ 30 渭 m and stripe width of 40 渭 m on the microstructure and uniaxial anisotropy of NiSZ _ (80) / S _ (FeX) _ (20) thin films were investigated.It is found that the continuous film shows isotropy, its ferromagnetic resonance frequency (fFMR) is 1.71GHz, and the stripe film exhibits anisotropy, and the anisotropic field HK of the stripe film increases with the decrease of stripe width.When the fringe width is reduced to 20 渭 m, the FMR frequency fFMR of the striped film increases to 2.1 GHz.The comparison of ferromagnetic resonance frequency (fFMR) and anisotropic field HK of all samples shows that the increase of ferromagnetic resonance frequency is attributed to the increase in the shape anisotropy of NiSZ _ (80) Fetig _ (20)) stripe films.A series of Fe56CO24B20 amorphous films with a thickness of 65 nm were prepared by pulsed laser deposition. The influence of compressive stress on the domain structure and uniaxial anisotropy of the films was investigated by introducing compressive stress into the curved Si substrate.It is found that the easy magnetization axis is perpendicular to the compressive stress direction, and with the increase of the compressive stress, the uniaxial magnetic anisotropy field HK increases from 54 Oe to 191 Oe, and the ferromagnetic resonance frequency increases from 3.41 GHz to 4.03 GHz correspondingly.Then the magnetic force microscope (MFM) test showed that the stripe domain structure and the symmetry of the stripe increased with the increase of the compressive stress in the thin films with compressive stress.Further analysis shows that the stress deposition method can not only increase the ferromagnetic resonance frequency of the soft magnetic thin film, but also reduce the magnetic loss.
【學(xué)位授予單位】:青島大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:O482.54;O484
【參考文獻(xiàn)】
相關(guān)期刊論文 前9條
1 周白楊;翁章釗;黎思文;陳志堅;劉全洲;李建新;;壓應(yīng)力對Sm-Fe-B磁致伸縮性能的影響(英文)[J];稀有金屬材料與工程;2016年04期
2 王藝程;張懷武;魯廣鐸;白飛明;;納米高頻軟磁薄膜材料研究進(jìn)展[J];中國材料進(jìn)展;2012年07期
3 李霞;滕曉云;;X射線衍射原理及在材料分析中的應(yīng)用[J];物理通報;2008年09期
4 謝巧英;張萬里;蔣洪川;沈博侃;彭斌;;張應(yīng)力對FeCoSiB非晶薄膜磁特性的影響[J];功能材料;2007年02期
5 都有為;;磁性材料新近進(jìn)展[J];物理;2006年09期
6 鄧聯(lián)文,江建軍,何華輝;磁性薄膜及其復(fù)合結(jié)構(gòu)高頻特性研究進(jìn)展[J];功能材料;2004年02期
7 劉亞丕,何時金,包大新,任旭余;軟磁材料的發(fā)展趨勢[J];磁性材料及器件;2003年03期
8 余晉岳,朱軍,周狄,錢建國,蔡炳初,趙小林;微細(xì)條形NiFe薄膜元件在磁化和反磁化過程中磁疇結(jié)構(gòu)的變遷過程[J];功能材料;2000年05期
9 齊鳳春;軟磁材料的發(fā)展現(xiàn)狀[J];材料導(dǎo)報;1995年03期
相關(guān)博士學(xué)位論文 前2條
1 肖玉華;FeCo-B_2O_3納米顆粒膜的高頻軟磁性及其各向異性調(diào)制[D];蘭州大學(xué);2009年
2 劉海順;基于磁各向異性特性應(yīng)力測試的理論與方法研究[D];中國礦業(yè)大學(xué);2008年
相關(guān)碩士學(xué)位論文 前7條
1 蔡信樂;Co基Heusler半金屬合金復(fù)合材料的磁輸運(yùn)性質(zhì)研究[D];福建師范大學(xué);2012年
2 汪學(xué)鋒;高頻軟磁薄膜的制備及其電磁噪聲抑制性能應(yīng)用研究[D];電子科技大學(xué);2011年
3 張正梅;Co基軟磁薄膜的高頻性質(zhì)[D];蘭州大學(xué);2010年
4 姜少寧;鐵鈷基軟磁材料的制備及磁性能的研究[D];太原科技大學(xué);2009年
5 吳衛(wèi)波;FeCo基高頻軟磁薄膜的制備與特性研究[D];電子科技大學(xué);2009年
6 劉美梅;高頻鐵磁薄膜的制備及磁特性研究[D];福建師范大學(xué);2008年
7 田俊紅;軟磁薄膜材料高頻響應(yīng)的微磁學(xué)研究[D];蘭州大學(xué);2006年
,本文編號:1770935
本文鏈接:http://sikaile.net/guanlilunwen/gongchengguanli/1770935.html