溴化鋰吸收式制冷系統(tǒng)水平管外降膜蒸發(fā)強化傳熱傳質(zhì)性能研究
本文選題:吸收式制冷 + 數(shù)值模擬 ; 參考:《長安大學》2017年碩士論文
【摘要】:溴化鋰吸收式制冷機組具有節(jié)電、環(huán)境友好且可以利用生產(chǎn)余熱等優(yōu)勢,近年來對溴化鋰吸收式制冷機組的性能研究十分廣泛。蒸發(fā)器作為溴化鋰吸收式制冷的制冷裝置,蒸發(fā)器的傳熱傳質(zhì)效率是影響溴化鋰吸收式制冷機組性能的重要因素之一。溴化鋰吸收式制冷機組內(nèi)的蒸發(fā)器形式為降膜式,在真空環(huán)境下,水溶液在水平管外降膜流動,包含氣液兩相流,流動過程同時伴隨著復雜的傳熱傳質(zhì)現(xiàn)象。本文從研究水平管管外降膜蒸發(fā)流動的傳熱傳質(zhì)角度出發(fā),主要對管外降膜蒸發(fā)換熱模型及換熱機理以及管外降膜蒸發(fā)換熱影響因素進行了研究。本文分析了橫向?qū)α鲗λ焦芙的ふ舭l(fā)的影響,建立了數(shù)學模型,并通過對基本控制方程的求解,得到在橫向?qū)α饔绊懴碌囊耗ず穸圈、沿管壁液膜流速u、垂直管壁液膜流速v及總速度U隨圓周角θ、噴淋密度Г以及y方向的距離的無量綱量η的變化規(guī)律,并重點分析了橫向?qū)α魉俣葀對總速度的影響,結(jié)果表明:液膜厚度δ隨圓周角增加先減小后增加,在圓周角為90°時達到最小值,其平均值隨噴淋密度的增加而增加;沿管壁液膜流速u,隨圓周角的增加先增加后減小,在圓周角為90°時達到最大值,其平均值隨噴淋密度及y方向無量綱長度的增加而增加;垂直管壁液流速流速v隨圓周角的增加先減小后增加,在圓周角為90°時達到最小值,其平均值隨噴淋密度及y方向無量綱長度的增加而增加;液膜總速度U的變化規(guī)律與沿管壁液膜流速u相同,U的數(shù)值大小受到垂直管壁液膜流速v的一定影響。同時,本文提出了借用無量綱量對基本控制方程進行化簡求解的方法,從而得到傳熱傳質(zhì)過程的無量綱溫度及無量綱質(zhì)量分數(shù)的求解方法。本文使用數(shù)值模擬軟件Fluent對本文建立的基礎物理模型(噴淋密度Г為0.1kg/(m·s),管徑φ為10mm,布液高度h為10mm,管間距d為10mm,時間t為0.32s時的水平管降膜蒸發(fā)流動模型)的流動、傳質(zhì)、傳熱進行模擬與分析,并分對不同噴淋密度、不同管徑、不同布液高度及不同管間距對流動、傳質(zhì)、傳熱的影響進行模擬與分析。借助前處理軟件Gambit對物理模型進行網(wǎng)格劃分,采用后處理軟件CFD-Post對模擬結(jié)果進行處理與繪圖,使用origin軟件進行數(shù)據(jù)處理。在模擬前,針對本文研究的多相流問題,選定VOF多相流模型及編譯自定義函數(shù)(User Defined Function,以后簡寫為UDF),采用分離式求解器求解控制方程,設定溶液的物性參數(shù),設置工作壓力為870Pa,將基于蒸發(fā)原理的兩相傳熱傳質(zhì)的UDF文件嵌入模型,選用PISO算法對迭代進行求解。模擬后得到的分析結(jié)果為:(1)基礎模型取不同的噴淋密度,隨噴淋密度的增加,液膜厚度增加,液膜速度增加,液膜傳熱及傳質(zhì)效果下降,本文模擬在噴淋密度為0.1kg/(m·s)時達到最佳傳熱傳質(zhì)效果;(2)對基礎模型取不同的管徑,隨管徑的增加,液膜厚度減小,液膜速度增加,但液膜穩(wěn)定性降低,導致液膜傳熱及傳質(zhì)效果先增強后下降,本文模擬在管徑為16mm時達到最佳傳熱傳質(zhì)效果;(3)對基礎模型取不同的布液高度,隨布液高度的增加,液膜厚度減小,液膜速度增加,液膜的傳熱及傳質(zhì)效果先增強后下降,本文模擬在布液高度為10mm時達到最佳傳熱傳質(zhì)效果;(4)對基礎模型取不同的管間距,隨管間距的增加,液膜厚度減小,液膜速度增加,液膜的傳熱及傳質(zhì)效果先增強后下降,本文模擬在管間距為10mm時達到最佳傳熱傳質(zhì)效果;(5)由以上幾點可以得出,液膜的傳熱及傳質(zhì)是耦合的,其變化趨勢相同。在液膜穩(wěn)定鋪展的條件下,液膜的厚度越薄、速度越低,其傳熱、傳質(zhì)效果越好。所得到的分析結(jié)果與之前的理論分析及前人的實驗結(jié)果相似。
[Abstract]:With power saving LiBr absorption chiller, environmental friendly and can make use of waste heat production and other advantages, in recent years, research on performance of lithium bromide absorption chiller evaporator widely. As the lithium bromide absorption refrigeration device of refrigeration, heat and mass transfer efficiency of the evaporator is one of the important factors affecting the performance of LiBr absorption chiller. The lithium bromide absorption evaporator form refrigeration unit in the falling film, in a vacuum environment, water solution of falling film flow outside the horizontal tube, including gas-liquid two-phase flow, flow process accompanied by the phenomenon of heat and mass transfer complex. This paper from the research level tube falling film evaporation heat transfer of flow of the main tube falling film evaporation the heat transfer model and heat transfer mechanism and tube falling film evaporation heat transfer influence factors were studied. This paper analyzes the transverse convection of horizontal tube falling film evaporation The influence of the mathematical model was established, and by solving the basic equations, obtained the film thickness in the delta transverse convection under the influence of the liquid velocity along the tube wall u, vertical wall liquid velocity V and the total rate of U with the circular angle theta, no variation of nondimensional ETA gamma spray density and the Y direction in the distance, and analyzes the influence of V on the total speed, transverse convection velocity results show that the film thickness decreased with the increase of the delta angle increased in the circumferential angle of 90 degrees reached the minimum value, the average value increases with the spray density along the tube wall; liquid velocity increased with the increase of u the circular angle increases first and then decreases in the circumferential angle is 90 degrees maximum, the average value with the increase of spray density and Y direction of dimensionless length increases; vertical wall flow rate of V increased with the circular angle decrease after increase in the circumferential angle of 90 degrees to minimum The average value, with the increase of spray density and Y direction of dimensionless length increases; variation of total film speed of U with the same liquid velocity along the tube wall u, numerical size U affected vertical wall liquid velocity of v. At the same time, is presented in this paper based method to simplify and solve for the control equations nondimensional, resulting in dimensionless temperature and heat transfer process and the solving method of dimensionless mass fraction. Based on the physical model established in this paper using the numerical simulation software Fluent (f 0.1kg/ spray density (M - s), pipe diameter is 10mm, height h 10mm liquid distribution, tube spacing D 10mm, t 0.32s for the horizontal tube falling film evaporation flow model) flow, mass transfer, heat transfer is simulated and analyzed, and the different spray density, different diameter, different height and different liquid distribution tube spacing on the flow, mass transfer, heat transfer effect For simulation and analysis. By pre-processing software Gambit to mesh the physical model, the postprocessing software CFD-Post processing and drawing on the simulation results, Origin software was used for data processing. In the simulation, according to the research of multiphase flow, multiphase flow model and selected VOF (User Defined Function compile custom function later, abbreviated as UDF), the separated solver control equation, the physical parameters of the solution set, set the working pressure of 870Pa, UDF file embedded in the heat and mass transfer model based on the principle of evaporation, using PISO algorithm to solve the iterative analysis. Simulation results are obtained: (1) based model of different spray density, with the increase of spray density, the film thickness increases, the film speed increase, decrease heat transfer and mass transfer in the liquid membrane, the simulation of spray density was 0.1kg/ (M - s) to The best heat transfer effect; (2) on the basis of the model with different diameter, with the increase of the diameter of the film thickness decreases, the film speed increases, but the stability of liquid membrane is reduced, resulting the heat transfer and mass transfer effects first increased and then decreased, this paper simulated the best heat transfer effect is 16mm in diameter; (3) on the basis of the model take the cloth liquid height is different, with the height of liquid film thickness increases, decreases, the film speed increases, heat transfer and mass transfer effect of the film first increased and then decreased, this paper simulated the best heat transfer and the height of 10mm in liquid distribution; (4) on the basis of model with different distance between tubes, with increasing tube the spacing of film thickness decreases, the film speed increases, heat transfer and mass transfer effect of the film first increased and then decreased, the simulation in tube spacing is 10mm to achieve the best heat transfer effect; (5) the above points can be concluded that the heat transfer and transfer film The mass is coupled, and the change trend is the same. Under the condition of stable spreading of liquid film, the thinner the liquid film and the lower the speed, the better the heat and mass transfer effect is. The obtained results are similar to previous theoretical analysis and previous experimental results.
【學位授予單位】:長安大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:TB657
【相似文獻】
相關期刊論文 前10條
1 張小艷,鄭宏飛,王強,張聯(lián)英,田懷璋;橫管降膜蒸發(fā)閉式循環(huán)太陽能海水淡化裝置的實驗[J];西安交通大學學報;2002年02期
2 臘棟;李茂德;秦偉;李偉江;李玉東;;降膜蒸發(fā)過程的傳熱性能研究[J];應用能源技術;2006年05期
3 劉紅;馬虎根;鄒靜;羅忠;;水平管排低壓降膜蒸發(fā)傳熱特性實驗研究[J];制冷與空調(diào);2010年04期
4 卜憲標;馬偉斌;龔宇烈;;氨水豎管降膜蒸發(fā)實驗和理論研究[J];熱能動力工程;2011年04期
5 王永福,周榮琪,段占庭;垂直管降膜蒸發(fā)傳熱研究進展[J];山東化工;2001年04期
6 馬學虎,高大志,安家明,朱曉波,陳嘉賓,鄧新祿;功能表面降膜蒸發(fā)傳熱特性的實驗研究[J];熱科學與技術;2003年02期
7 李正良;鄭宏飛;陳子乾;何開巖;方甲闖;解夢秋;;降膜蒸發(fā)低溫多效太陽能海水淡化系統(tǒng)實驗研究[J];太陽能學報;2007年04期
8 羅忠;吳曉雨;李蔚;;強化管表面水降膜蒸發(fā)的實驗研究[J];工程熱物理學報;2010年11期
9 牛小翠;馬曉建;;木質(zhì)素懸浮液管式降膜蒸發(fā)傳熱研究[J];化學工程;2011年12期
10 田華;劉忠彥;馬一太;;水平強化管外降膜蒸發(fā)特性的實驗研究[J];工程熱物理學報;2012年11期
相關會議論文 前4條
1 程彬;李敏霞;馬一太;;強化管外降膜蒸發(fā)的機理分析[A];走中國創(chuàng)造之路——2011中國制冷學會學術年會論文集[C];2011年
2 劉保偉;陳中源;黃校熙;董紅軍;;機械壓縮降膜蒸發(fā)技術在氧化鋁生產(chǎn)中的應用[A];中國有色金屬學會第五屆學術年會論文集[C];2003年
3 羅林聰;張冠敏;潘繼紅;田茂誠;;異型管外降膜蒸發(fā)液膜流動數(shù)值模擬分析[A];第十一屆全國水動力學學術會議暨第二十四屆全國水動力學研討會并周培源誕辰110周年紀念大會文集(下冊)[C];2012年
4 黃志光;汪榮順;顧安忠;;不凝結(jié)氣體水平管外凝結(jié)傳熱分析[A];上海市制冷學會2005年學術年會論文集[C];2005年
相關重要報紙文章 前1條
1 記者 譚志文;高水平建好城市更要高水平管好城市[N];郴州日報;2011年
相關博士學位論文 前3條
1 陳學;水平管外海水降膜流動與蒸發(fā)傳熱過程研究[D];大連理工大學;2015年
2 劉瑞;高真空度低質(zhì)量流率下蒸汽水平管內(nèi)凝結(jié)特性研究[D];大連理工大學;2014年
3 任彬;水平管內(nèi)含不凝氣體蒸汽冷凝特性研究[D];華東理工大學;2015年
相關碩士學位論文 前10條
1 趙潤青;溴化鋰吸收式制冷系統(tǒng)水平管外降膜蒸發(fā)強化傳熱傳質(zhì)性能研究[D];長安大學;2017年
2 張曉紅;基于VOF法的橫管降膜蒸發(fā)傳熱特性的數(shù)值分析[D];大連理工大學;2015年
3 羅勇強;基于多級閃蒸模型的降膜蒸發(fā)研究[D];天津大學;2014年
4 周文萌;水平管降膜蒸發(fā)海水淡化鋁合金換熱管研究[D];天津大學;2014年
5 范永堅;降膜蒸發(fā)傳熱實驗研究及多效蒸發(fā)系統(tǒng)流程模擬[D];華東理工大學;2016年
6 郭玉君;水平螺旋翅片管外降膜蒸發(fā)傳熱傳質(zhì)性能研究[D];內(nèi)蒙古工業(yè)大學;2015年
7 劉璐;降膜板結(jié)構(gòu)及液體表面張力對降膜蒸發(fā)傳質(zhì)的影響[D];天津大學;2015年
8 蔡文生;制冷系統(tǒng)水平管降膜蒸發(fā)特性的理論分析和實驗研究[D];天津大學;2014年
9 米培杰;水平管降膜蒸發(fā)中針對鈦管的海水成垢過程實驗研究[D];大連理工大學;2016年
10 葛強強;腈綸溶劑回收降膜蒸發(fā)強化研究[D];華東理工大學;2017年
,本文編號:1764386
本文鏈接:http://sikaile.net/guanlilunwen/gongchengguanli/1764386.html