基于關(guān)鍵工序的全局隨機(jī)機(jī)器選擇和改進(jìn)GA求解FJSP
本文選題:柔性作業(yè)車間調(diào)度 切入點(diǎn):優(yōu)化 出處:《化工學(xué)報(bào)》2017年03期
【摘要】:以FJSP的最大完工時(shí)間作為優(yōu)化目標(biāo),在考慮同一工件的工序順序約束的同時(shí),為提高初始種群的多樣性,針對(duì)FJSP的機(jī)器選擇問(wèn)題采用堆棧方式存儲(chǔ)工序。P-FJSP中只有一臺(tái)機(jī)器可選的關(guān)鍵工序能直接影響機(jī)器總負(fù)荷和工件加工時(shí)間,進(jìn)而提出了一種基于關(guān)鍵工序的全局隨機(jī)選擇(GRS)初始化方法。為了避免基本遺傳算法在求解FJSP時(shí)陷入局部極優(yōu)而停滯,在GA算法中加入再激活(re-activation)機(jī)制,旨在重新激活種群,增加種群的多樣性。最后,針對(duì)FJSP基準(zhǔn)測(cè)試算例進(jìn)行數(shù)值分析,通過(guò)初始機(jī)器選擇部分的性能對(duì)比實(shí)驗(yàn)、不同初始方式下遺傳算法求解FJSP對(duì)比實(shí)驗(yàn)分別驗(yàn)證了GRS初始化機(jī)制的有效性和所提改進(jìn)算法的可靠性。
[Abstract]:Taking the maximum completion time of FJSP as the optimization objective, considering the process sequence constraints of the same work piece, to improve the diversity of the initial population,In order to solve the machine selection problem of FJSP, only one machine can be selected as the key process in the stack storage process. P-FJSP can directly affect the total machine load and the processing time of the workpiece.Furthermore, a global random selection (GRS) initialization method based on key processes is proposed.In order to avoid the basic genetic algorithm falling into local optimum and stagnation in solving FJSP, the reactivation re-activation mechanism is added to GA algorithm to reactivate the population and increase the diversity of the population.Finally, the numerical analysis of the FJSP benchmark is carried out, and the performance comparison experiment of the initial machine selection part is carried out.The effectiveness of the GRS initialization mechanism and the reliability of the proposed improved algorithm are verified by the comparative experiments of solving FJSP by genetic algorithm in different initial modes.
【作者單位】: 北京石油化工學(xué)院信息工程學(xué)院;北京化工大學(xué)信息科學(xué)與技術(shù)學(xué)院;
【基金】:國(guó)家自然科學(xué)基金項(xiàng)目(61304217) 北京市教育委員會(huì)科技計(jì)劃項(xiàng)目(KM201510017003)~~
【分類號(hào)】:TP18;TB497
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 楊艷麗,史維祥;一種新的優(yōu)化算法—遺傳算法的設(shè)計(jì)[J];液壓氣動(dòng)與密封;2001年02期
2 王毅,曹樹(shù)良;遺傳算法在并聯(lián)水泵系統(tǒng)運(yùn)行優(yōu)化中的應(yīng)用[J];流體機(jī)械;2003年10期
3 趙義紅,李正文,何其四;生物信息處理系統(tǒng)遺傳算法探討[J];成都理工大學(xué)學(xué)報(bào)(自然科學(xué)版);2004年05期
4 李凡,黃數(shù)林,張東風(fēng);一種改進(jìn)的多倍體遺傳算法[J];華中科技大學(xué)學(xué)報(bào)(自然科學(xué)版);2005年01期
5 韋雪潔;黎明;劉高航;田貴超;;注入式的遺傳算法的分析與研究[J];南昌航空工業(yè)學(xué)院學(xué)報(bào)(自然科學(xué)版);2006年01期
6 閻綱;;遺傳算法及其仿真[J];湖南工程學(xué)院學(xué)報(bào)(自然科學(xué)版);2006年04期
7 ;遺傳算法[J];電網(wǎng)與清潔能源;2008年10期
8 吳玫;陸金桂;;遺傳算法的研究進(jìn)展綜述[J];機(jī)床與液壓;2008年03期
9 李培植;肖利明;于靜濤;;基于遺傳算法的結(jié)構(gòu)優(yōu)化方法[J];公路交通科技(應(yīng)用技術(shù)版);2008年08期
10 于金;金樂(lè);杜海璐;;基于改進(jìn)遺傳算法的集裝箱裝載優(yōu)化問(wèn)題研究[J];船海工程;2008年05期
相關(guān)會(huì)議論文 前10條
1 陳家照;廖海濤;張中位;羅寅生;;一種改進(jìn)的遺傳算法及其在路徑規(guī)劃中的應(yīng)用[A];2009系統(tǒng)仿真技術(shù)及其應(yīng)用學(xué)術(shù)會(huì)議論文集[C];2009年
2 李國(guó)云;劉穎;薛梅;鄔志敏;;遺傳算法在高溫空冷冷凝器優(yōu)化設(shè)計(jì)中的應(yīng)用[A];第五屆全國(guó)制冷空調(diào)新技術(shù)研討會(huì)論文集[C];2008年
3 王志軍;李守春;張爽;;改進(jìn)的遺傳算法在反演問(wèn)題中的應(yīng)用[A];新世紀(jì) 新機(jī)遇 新挑戰(zhàn)——知識(shí)創(chuàng)新和高新技術(shù)產(chǎn)業(yè)發(fā)展(上冊(cè))[C];2001年
4 任燕翔;姜立;劉連民;從滋慶;;改進(jìn)遺傳算法在三維日照方案優(yōu)化中的應(yīng)用[A];工程三維模型與虛擬現(xiàn)實(shí)表現(xiàn)——第二屆工程建設(shè)計(jì)算機(jī)應(yīng)用創(chuàng)新論壇論文集[C];2009年
5 韓娟;;遺傳算法概述[A];第三屆河南省汽車工程科技學(xué)術(shù)研討會(huì)論文集[C];2006年
6 龐國(guó)仲;王元西;;基于遺傳算法控制步長(zhǎng)的定性仿真方法[A];'2000系統(tǒng)仿真技術(shù)及其應(yīng)用學(xué)術(shù)交流會(huì)論文集[C];2000年
7 張忠華;楊淑瑩;;基于遺傳算法的聚類設(shè)計(jì)[A];全國(guó)第二屆信號(hào)處理與應(yīng)用學(xué)術(shù)會(huì)議?痆C];2008年
8 何翠紅;區(qū)益善;;遺傳算法及其在計(jì)算機(jī)編程中的應(yīng)用[A];1995年中國(guó)智能自動(dòng)化學(xué)術(shù)會(huì)議暨智能自動(dòng)化專業(yè)委員會(huì)成立大會(huì)論文集(下冊(cè))[C];1995年
9 靳開(kāi)巖;張乃堯;;幾種實(shí)用遺傳算法及其比較[A];1996年中國(guó)智能自動(dòng)化學(xué)術(shù)會(huì)議論文集(下冊(cè))[C];1996年
10 王宏剛;曾建潮;李志宏;;攝動(dòng)遺傳算法[A];1996年中國(guó)智能自動(dòng)化學(xué)術(shù)會(huì)議論文集(下冊(cè))[C];1996年
相關(guān)重要報(bào)紙文章 前1條
1 林京;《神經(jīng)網(wǎng)絡(luò)和遺傳算法在水科學(xué)領(lǐng)域的應(yīng)用》將面市[N];中國(guó)水利報(bào);2002年
相關(guān)博士學(xué)位論文 前10條
1 蔡美菊;交互式遺傳算法及其在隱性目標(biāo)決策問(wèn)題中的應(yīng)用研究[D];合肥工業(yè)大學(xué);2015年
2 張士偉;三維聲學(xué)快速多極基本解法在機(jī)械噪聲預(yù)測(cè)中的應(yīng)用研究[D];沈陽(yáng)工業(yè)大學(xué);2016年
3 高軍;無(wú)鉛焊料本構(gòu)模型及其參數(shù)識(shí)別方法研究[D];南京航空航天大學(xué);2015年
4 Amjad Mahmood;半監(jiān)督進(jìn)化集成及其在網(wǎng)絡(luò)視頻分類中的應(yīng)用[D];西南交通大學(xué);2015年
5 周輝仁;遞階遺傳算法理論及其應(yīng)用研究[D];天津大學(xué);2008年
6 郝國(guó)生;交互式遺傳算法中用戶的認(rèn)知規(guī)律及其應(yīng)用[D];中國(guó)礦業(yè)大學(xué);2009年
7 侯格賢;遺傳算法及其在跟蹤系統(tǒng)中的應(yīng)用研究[D];西安電子科技大學(xué);1998年
8 馬國(guó)田;遺傳算法及其在電磁工程中的應(yīng)用[D];西安電子科技大學(xué);1998年
9 唐文艷;結(jié)構(gòu)優(yōu)化中的遺傳算法研究和應(yīng)用[D];大連理工大學(xué);2002年
10 周激流;遺傳算法理論及其在水問(wèn)題中應(yīng)用的研究[D];四川大學(xué);2000年
相關(guān)碩士學(xué)位論文 前10條
1 張英俐;基于遺傳算法的作曲系統(tǒng)研究[D];山東師范大學(xué);2006年
2 鐘海萍;原對(duì)偶遺傳算法與蟻群算法的一種融合算法[D];暨南大學(xué);2013年
3 彭騫;基于遺傳算法的山區(qū)高等級(jí)公路縱斷面智能優(yōu)化方法研究[D];昆明理工大學(xué);2015年
4 周玉林;基于小波分析和遺傳算法的配電網(wǎng)故障檢測(cè)[D];昆明理工大學(xué);2015年
5 郭頌;基于粗糙集和遺傳算法的數(shù)字管道生產(chǎn)管理系統(tǒng)研究[D];昆明理工大學(xué);2015年
6 吳南;數(shù)值逼近遺傳算法的研究應(yīng)用[D];華南理工大學(xué);2015年
7 于光帥;一類優(yōu)化算法的改進(jìn)研究與應(yīng)用[D];渤海大學(xué);2015年
8 吳欣欣;改進(jìn)GA-TS算法優(yōu)化的BP神經(jīng)網(wǎng)絡(luò)入侵檢測(cè)研究[D];湖南工業(yè)大學(xué);2015年
9 王壘;基于遺傳算法的A型單喇叭互通立交線形優(yōu)化[D];長(zhǎng)安大學(xué);2015年
10 龔高;基于遺傳算法的橋梁結(jié)構(gòu)傳感器優(yōu)化布置研究[D];長(zhǎng)安大學(xué);2015年
,本文編號(hào):1708158
本文鏈接:http://sikaile.net/guanlilunwen/gongchengguanli/1708158.html