從低碳醇烴混合物中分離丁醇的實驗與模擬研究
本文選題:費托合成產(chǎn)物 切入點:丁醇 出處:《浙江大學(xué)》2017年碩士論文 論文類型:學(xué)位論文
【摘要】:在費托合成產(chǎn)物中,會出現(xiàn)大量正構(gòu)烷烴和伯醇的混合物,正構(gòu)烷烴和伯醇之間存在二元共沸現(xiàn)象,因此很難用普通的分離方法分離,在費托合成產(chǎn)物低沸段,即低碳醇烴混合物中,甲醇、乙醇、丙醇可通過用水萃取的方法進行分離,但丁醇和水互溶度小,無法通過上述方法進行分離。本文以費托合成產(chǎn)物的低沸段,即己烷、庚烷、辛烷、壬烷、乙醇、丙醇、丁醇、戊醇八元醇烴混合物為代表,以年產(chǎn)2萬噸丁醇為例,通過實驗與模擬,對醇烴混合物的分離進行研究與優(yōu)化,為工業(yè)化生產(chǎn)提供依據(jù)。論文首先用不同的熱力學(xué)模型計算得到的丁醇-辛烷二元氣液平衡數(shù)據(jù)與文獻值對比,發(fā)現(xiàn)Wilson熱力學(xué)模型的模擬值與實驗值一致性較好,隨后選擇Wilson模型對八元醇烴混合物的精餾分段分離過程進行模擬。結(jié)果表明,精餾過程可以實現(xiàn)醇和醇之間的清晰分割,并在每一股出料中獲得一個伯醇和兩個正構(gòu)烷烴組成的混合物,本文選取其中的丁醇-辛烷-壬烷混合物進行進一步的分離。論文選取乙醇水溶液作為萃取劑對丁醇-辛烷-壬烷混合物進行分離,首先通過實驗獲取乙醇-丁醇-辛烷-水和乙醇-丁醇-壬烷-水兩組四元液液平衡數(shù)據(jù),使用這兩組四元體系的液液平衡數(shù)據(jù)回歸得到NRTL熱力學(xué)模型的二元交互作用參數(shù),然后分別用回歸得到的二元交互作用參數(shù)以及AspenPlus內(nèi)置默認(rèn)參數(shù)預(yù)測乙醇-丁醇-辛烷-壬烷-水五元體系的液液平衡數(shù)據(jù)并將計算值與五元液液平衡實驗數(shù)據(jù)進行對比,結(jié)果表明,使用乙醇-丁醇-辛烷-水和乙醇-丁醇-壬烷-水兩組四元液液平衡數(shù)據(jù)回歸得到的NRTL二元交互作用參數(shù)預(yù)測五元液液平衡數(shù)據(jù)誤差更小,表明回歸得到的二元交互作用參數(shù)可以進一步用于模擬以乙醇水溶液為萃取劑將丁醇從丁醇-辛烷-壬烷中分離出來的萃取過程。研究還發(fā)現(xiàn),在溶劑比為3時,隨著乙醇水溶液質(zhì)量分?jǐn)?shù)的升高,丁醇和烷烴的分配系數(shù)隨之升高,丁醇的選擇性系數(shù)隨之先升高后降低,并在乙醇水溶液質(zhì)量分?jǐn)?shù)40%左右可以達到最高值691,表明40%質(zhì)量分?jǐn)?shù)的乙醇水溶液是較優(yōu)的萃取劑。論文提出了從丁醇-辛烷-壬烷混合物中分離出丁醇產(chǎn)品的工藝流程,并使用本文回歸得到的二元交互作用參數(shù)對萃取塔進行了模擬計算,同時對整個流程進行了模擬與優(yōu)化,得到了較優(yōu)的操作參數(shù),實現(xiàn)了質(zhì)量流速2.74t/hr,質(zhì)量分?jǐn)?shù)99.83%,回收率99.45%,年產(chǎn)2萬噸左右的丁醇分離目標(biāo)。論文還使用Aspen Energy Analyzer進行了換熱網(wǎng)絡(luò)分析和優(yōu)化,優(yōu)化前工藝流程所需冷卻量9.90MW,加熱量9.74MW,優(yōu)化后冷卻量和加熱量均節(jié)省1.01MW,總計節(jié)省能耗 10.29%。
[Abstract]:A large number of mixtures of n-alkanes and primary alcohols appear in the products of Fischer synthesis, and there is a binary azeotropic phenomenon between n-alkanes and primary alcohols, so it is difficult to separate them by ordinary separation methods. In other words, methanol, ethanol and propanol can be separated by water extraction method, but butanol and water can not be separated by these methods. Octane, nonane, ethanol, propanol, butanol, pentanol octadecanol hydrocarbon mixture as the representative, taking the annual production of 20,000 tons of butanol as an example, the separation of alcohol-hydrocarbon mixture was studied and optimized by experiment and simulation. In this paper, the binary gas-liquid equilibrium data of butanol-octane obtained by different thermodynamic models are compared with those of literature, and it is found that the simulation value of Wilson thermodynamic model is in good agreement with the experimental value. Then the Wilson model was selected to simulate the distillation separation process of octyl alcohol-hydrocarbon mixtures. The results show that the distillation process can achieve a clear separation between alcohols and alcohols. A mixture of one primary alcohol and two n-alkanes is obtained from each strand of material, In this paper, the butanol-octane-nonane mixture is selected for further separation. The butanol-octane-nonane mixture is separated by ethanol aqueous solution as the extractant. Firstly, two groups of quaternary liquid-liquid equilibrium data of ethanol-butanol-octane water and ethanol-butanol-nonane water were obtained. The binary interaction parameters of the NRTL thermodynamic model were obtained by using the liquid-liquid equilibrium data of the two groups of quaternions. Then the binary interaction parameters obtained by regression and the default parameters of AspenPlus were used to predict the liquid-liquid equilibrium data of ethanol-butanol-octane-nonane water quaternary system, and the calculated values were compared with the experimental data of five-element liquid-liquid equilibrium. The results show that the binary interaction parameters of NRTL obtained from the regression of the data of ethanol butanol-octane-water and ethanol-butanol-nonane water have smaller error in predicting the five-component liquid-liquid equilibrium data. It is shown that the binary interaction parameters obtained by regression can be further used to simulate the extraction process of butanol separated from butanol-octane nonane with ethanol aqueous solution as extractant. It is also found that when the solvent ratio is 3, The partition coefficients of butanol and alkanes increased with the increase of the mass fraction of ethanol aqueous solution, and the selectivity coefficient of butanol first increased and then decreased. The highest value of 691 can be reached when the mass fraction of ethanol aqueous solution is about 40%, which indicates that the ethanol aqueous solution with 40% mass fraction is the best extractant. In this paper, the process of separating butanol from butanol-octane nonane mixture is proposed. The binary interaction parameters obtained in this paper are used to simulate and calculate the extraction column, and the whole process is simulated and optimized, and the optimal operating parameters are obtained. The mass flow rate of 2.74 t / h, the mass fraction of 99.83, the recovery rate of 99.45 and the annual output of about 20,000 tons of butanol separation were achieved. The heat transfer network was also analyzed and optimized by Aspen Energy Analyzer. Before optimization, the cooling capacity and heat added amount needed for the process were 9.90 MW and 9.74 MW respectively. After optimization, the cooling capacity and heat addition were saved by 1.01MW, and the energy consumption was saved by 10.29 MW in total.
【學(xué)位授予單位】:浙江大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TQ223.124;TQ028.3
【參考文獻】
相關(guān)期刊論文 前10條
1 李澤龍;李悅原;;Aspen Energy Analyzer軟件在凝析油蒸餾裝置改造的應(yīng)用[J];石油化工設(shè)計;2016年04期
2 馬宏瑞;王天培;花莉;王宇彤;;膜萃取技術(shù)回收濃縮廢水中對甲苯胺的研究[J];陜西科技大學(xué)學(xué)報(自然科學(xué)版);2016年02期
3 裴彥鵬;丁云杰;朱何俊;杜虹;;活性炭負(fù)載的鈷基催化劑催化費托合成反應(yīng)一步合成C_1-C_(18)混合醇:二氧化硅助劑的作用(英文)[J];催化學(xué)報;2015年03期
4 趙文華;韓淑琴;王俊;魏玲玲;謝美婷;;超聲-微波協(xié)同萃取法提取荔枝殼中多酚[J];山東化工;2015年05期
5 裴彥鵬;丁云杰;臧娟;宋憲根;董文達;朱何俊;王濤;陳維苗;;費托合成:SiO_2和Al_2O_3負(fù)載的Co_2C催化劑的表征和評價[J];催化學(xué)報;2015年02期
6 吳增輝;曹宇鋒;李建華;單佳慧;蘇廣均;;多級錯流萃取分離丙酸甲酯-甲醇-水體系的模擬及實驗研究[J];化學(xué)世界;2014年06期
7 薛麗娜;劉巖;;費托合成工藝發(fā)展現(xiàn)狀[J];山西化工;2014年03期
8 高運暉;周春艷;王瑩瑩;邢鑫;商永臣;;內(nèi)標(biāo)法在甘油氫解反應(yīng)中的運用以及相對校正因子的求出[J];化學(xué)工程師;2014年02期
9 湯志剛;李紅偉;郭棟;崔敬杰;;乙二醇單叔丁醚與乙二醇二叔丁醚的分離[J];化學(xué)工程;2014年01期
10 劉瑞璨;李明哲;楊榮華;汪海;;基于ASPEN PLUS軟件的正丁醇精餾工藝設(shè)計[J];化工裝備技術(shù);2013年06期
相關(guān)會議論文 前1條
1 張云賢;張華西;余維新;李杰靈;譚平華;;正丁醇的合成進展簡述[A];2015年中國化工學(xué)會年會論文集[C];2015年
相關(guān)碩士學(xué)位論文 前10條
1 孫超;合成氣制低碳醇Cu-Fe/SiO_2催化劑的研究[D];上海應(yīng)用技術(shù)大學(xué);2016年
2 劉東;高濃煤化工廢水中酚和有機羧酸酮萃取的相平衡測定及工藝模擬研究[D];華南理工大學(xué);2016年
3 朱明明;甲醇精餾裝置的流程模擬與優(yōu)化[D];華東理工大學(xué);2016年
4 周紀(jì)龍;鉬基合成醇催化劑活化機理研究[D];中國科學(xué)技術(shù)大學(xué);2016年
5 喬鑫龍;中空纖維膜萃取處理含酚廢水的研究[D];浙江大學(xué);2016年
6 王楊楊;煤基混合碳四烴分離工藝的模擬與優(yōu)化[D];華東理工大學(xué);2015年
7 李碩;白炭黑共沸蒸餾后正丁醇的多級萃取回收[D];北京化工大學(xué);2015年
8 高孜孜;混合溶劑萃取精餾分離最低共沸物系的研究[D];浙江大學(xué);2015年
9 李俊瀾;碳酸二甲酯生產(chǎn)工藝熱集成研究[D];福州大學(xué);2014年
10 于博;煤焦油蒸餾換熱網(wǎng)絡(luò)的優(yōu)化[D];大連理工大學(xué);2014年
,本文編號:1651136
本文鏈接:http://sikaile.net/guanlilunwen/gongchengguanli/1651136.html