剛—柔耦合復合結(jié)構(gòu)的動力學建模理論研究
發(fā)布時間:2018-03-22 12:34
本文選題:剛-柔耦合 切入點:動力學建模 出處:《南京理工大學》2014年博士論文 論文類型:學位論文
【摘要】:許多機械構(gòu)件和航空航天結(jié)構(gòu),如風力發(fā)電機葉片、柔性機械臂、直升機旋翼、航空發(fā)動機葉片、衛(wèi)星天線以及太陽能帆板等,都屬于柔性附件搭載于剛性主體的剛-柔耦合結(jié)構(gòu),且都可以簡化為轉(zhuǎn)動的中心剛體-懸臂梁或懸臂板模型進行動力學分析。這類結(jié)構(gòu)所承擔的任務十分復雜,相應的柔性附件往往處在高溫、高載等極端惡劣工況之下。為滿足實際工程需求,新型功能復合材料以及智能材料已經(jīng)逐漸取代傳統(tǒng)材料而成為結(jié)構(gòu)設(shè)計者的首選。除了實現(xiàn)多體系統(tǒng)輕質(zhì)化、高速化與高精度化的發(fā)展目標外,考慮幾何非線性、材料非線性以及含智能材料的柔性復合結(jié)構(gòu)的動力學建模理論研究與控制設(shè)計問題也是柔性多體系統(tǒng)動力學領(lǐng)域急需解決的難題之一。本文基于柔性多體系統(tǒng)剛-柔耦合動力學理論,對含有功能梯度材料(FGM)、壓電材料和主動約束層阻尼(ACID)等復合智能梁板結(jié)構(gòu)做大范圍運動的動力學問題進行了建模理論研究和數(shù)值仿真研究。本文的研究工作和成果主要有:1.對柔性多體系統(tǒng)動力學的研究現(xiàn)狀、FGM、壓電材料、ACLD主被動混合控制和頻率轉(zhuǎn)向問題的研究進展進行綜述,提出了本文的研究目標和內(nèi)容。2.對做大范圍旋轉(zhuǎn)運動的中心剛體-智能復合梁系統(tǒng)的剛-柔耦合動力學建模理論進行了研究,建立了材料特性沿梁厚度方向梯度分布的中心剛體-FGM梁系統(tǒng)的高次剛-柔耦合模型。在此基礎(chǔ)上,將模型拓展為含壓電智能材料的旋轉(zhuǎn)中心剛體-FGM梁系統(tǒng)和中心剛體-ACLD梁系統(tǒng)。3.基于高次剛-柔耦合動力學建模方法,編制動力學仿真軟件,分別對中心剛體-FGM梁系統(tǒng)和貼有壓電片的旋轉(zhuǎn)智能梁系統(tǒng)的動力學特性進行了研究,同時對中心剛體-ACLD智能復合梁系統(tǒng)進行了主被動混合振動控制研究。對做勻速旋轉(zhuǎn)運動的中心剛體-FGM梁系統(tǒng)的自由振動特性進行分析,深入研究了考慮縱橫振動模態(tài)耦合效應下系統(tǒng)的固有頻率與模態(tài)特性。采用ACLD主被動混合控制技術(shù),通過設(shè)計反饋調(diào)節(jié)增益,對中心剛體-ACLD復合梁系統(tǒng)實現(xiàn)了智能振動控制。4.以中心剛體-柔性梁(hub-beam)系統(tǒng)為研究對象,通過柔性梁變形傾角的描述思想,建立了另外一種hub-beam系統(tǒng)的剛-柔耦合動力學模型。以梁變形傾角及軸向拉伸應變?yōu)樽兞?采用梁中軸線弧長坐標積分來精確描述其變形場,基于Hamilton變分原理導出了系統(tǒng)的非線性偏微分-積分方程組和有限元離散化完整傾角模型。對梁傾角進行二次泰勒展開,建立了系統(tǒng)的另外三個不同層次的離散化傾角剛-柔耦合動力學模型,即四次傾角模型、二次傾角模型和無拉伸簡化二次傾角模型。將二次傾角模型理論應用于中心剛體-軸向FGM楔形梁系統(tǒng)的動力學建模中。5.基于梁傾角變形描述的剛-柔耦合建模理論,編制相應的動力學仿真軟件,對中心剛體-懸臂梁系統(tǒng)的動力學行為進行了研究。通過與一次近似剛-柔耦合模型和高次剛-柔耦合模型的比較,證明了所提傾角建模方法的準確性。通過對四個不同層次的離散化傾角剛-柔耦合模型算例計算結(jié)果之間的比較,說明各模型在計算效率及精度上的差異;诟咝У亩蝺A角模型理論,分析了材料特性沿梁軸向梯度分布的中心剛體-FGM楔形梁系統(tǒng)的動力學特性。6.建立了做大范圍運動FGM板的剛-柔耦合模型,詳細研究了做勻速定軸轉(zhuǎn)動的FGM板自由振動特性,分析了系統(tǒng)的頻率轉(zhuǎn)向現(xiàn)象,獲得了板的振型變化圖及振型節(jié)線圖。
[Abstract]:Many mechanical components and aerospace structures, such as wind turbine blades, flexible manipulator, helicopter rotor, engine blade, satellite antenna and solar panels, all belong to the rigid flexible coupling structure of flexible appendages mounted on the rigid body, and can be simplified as a rigid body Dynamics Analysis Center - rotating cantilever beam or cantilever plate this kind of structure model. The task is very complex, flexible attachments often in high temperature, under high load extreme conditions. In order to meet the requirement of practical engineering, advanced functional materials and intelligent materials have gradually replaced the traditional materials as the structure designers first choice. In addition to the realization of multi body system of lightweight, high speed development goals with the high precision, considering the geometric nonlinearity, material nonlinearity and dynamics of flexible structures with intelligent material modeling theory research One of the problems of the design and control problem of flexible multibody system dynamics to be solved in the domain. In this paper, the flexible multi-body system rigid flexible coupling dynamics based on the theory of containing functional gradient materials (FGM), piezoelectric materials and active constrained layer damping (ACID) dynamics of composite intelligent beam plate structure to expand the scope of movement the modeling research and numerical simulation theory. In this paper, the main research work and achievements: the status quo, research on dynamics of flexible multibody systems of the 1. pairs of FGM, piezoelectric materials, ACLD hybrid active passive control and frequency to research progress were reviewed, this paper put forward the research goal and content.2. hub to expand the range of the rotational motion of intelligent composite beam system of rigid coupled dynamical modeling theory is studied, established the material properties along the center of the beam thickness gradient distribution of rigid body -FGM High beam system of rigid flexible coupling model. On this basis, the model is extended to the piezoelectric smart materials center of rotation of the rigid body -FGM beam system and hub beam -ACLD system.3. based on high-order coupled rigid flexible dynamics modeling method, dynamic simulation software, dynamic characteristics of -FGM beam system with a central rigid body and pressure rotary piezoelectric intelligent beam system is studied, and the hub -ACLD intelligent composite beam system is studied to control the hybrid active passive vibration. Analyze the free vibration characteristics of hub beam system -FGM do uniform rotation motion, in-depth research considering the natural frequency of longitudinal and transverse vibration modal coupling system and mode characteristics. Using ACLD active passive hybrid control technology, through the design of feedback gain of a central rigid body -ACLD composite beam system realizes intelligent vibration control by.4. Flexible hub beam (hub-beam) system as the research object, through the deformation of flexible beams angle description method, established another kind of rigid flexible coupling dynamics model of hub-beam system. The beam deformation angle and axial tensile strain as the variable, the long axis arc beam coordinate integral to accurately describe its deformation, nonlinear Hamilton variational principle is derived system of Integro partial differential equations and finite element discretization. The complete angle model based on beam angle two Taylor, built three other discrete angle at different levels of the rigid flexible coupling dynamic model of the system, namely the four angle model, two angle model and no two angle tension was simplified model. Dynamic modeling application will be the two time in the center of a rigid angle model FGM axial wedge beam system in.5. based on beam angle deformation of the rigid flexible coupling joint description model The preparation of dynamics simulation software, dynamic behavior of the hub beam system are studied. Through the comparison of the rigid flexible coupling model and high-order rigid flexible coupling model and the first approximation, proved the accuracy of the proposed modeling method. Through the angle of the four different levels of the discrete angle the rigid flexible coupling model for example comparison between the calculated results and the model differences in the calculation efficiency and precision. The two angle model theory based on efficient analysis of the dynamic characteristics of.6. beam along the axial gradient distribution of the hub beam system -FGM wedge material properties established rigid flexible coupling model and range of motion the FGM board, a detailed study of the uniform rotation of the FGM plate free vibration analysis of the system, the frequency of steering phenomenon, won the mode change chart and the vibration plate section line.
【學位授予單位】:南京理工大學
【學位級別】:博士
【學位授予年份】:2014
【分類號】:TB122
【參考文獻】
相關(guān)期刊論文 前10條
1 石慶華;向錦武;;大變形薄壁復合材料旋轉(zhuǎn)梁靜動態(tài)特性分析[J];工程力學;2008年01期
2 劉錦陽,洪嘉振;柔性體的剛-柔耦合動力學分析[J];固體力學學報;2002年02期
3 黎亮;章定國;洪嘉振;;作大范圍運動FGM矩形薄板的動力學特性研究[J];動力學與控制學報;2013年04期
4 鄧峰巖;和興鎖;李亮;張娟;趙春燕;;耦合變形對大范圍運動柔性梁動力學建模的影響[J];計算力學學報;2006年05期
5 王保林,杜善義,韓杰才;功能梯度材料的熱/機械耦合分析研究進展[J];力學進展;1999年04期
6 杜海平,石銀明,張亮,史習智;主動約束層阻尼振動控制研究進展[J];力學進展;2001年04期
7 黃文虎,王心清,張景繪,鄭鋼鐵;航天柔性結(jié)構(gòu)振動控制的若干新進展[J];力學進展;1997年01期
8 齊朝暉;羅曉明;黃志浩;;含非理想空間棱柱鉸的多體系統(tǒng)接觸分析[J];力學學報;2011年03期
9 張偉;武正;郭翔鷹;;功能梯度材料變轉(zhuǎn)速旋轉(zhuǎn)懸臂板的非線性動力學研究[J];科技導報;2012年22期
10 王淼,方之楚;主動約束層阻尼梁結(jié)構(gòu)復雜耦合振動的多層譜有限元法[J];上海交通大學學報;2005年01期
,本文編號:1648694
本文鏈接:http://sikaile.net/guanlilunwen/gongchengguanli/1648694.html
最近更新
教材專著