步態(tài)穩(wěn)定性的生物力學(xué)因子研究
本文選題:步態(tài) 切入點(diǎn):滑移 出處:《天津科技大學(xué)》2017年碩士論文 論文類型:學(xué)位論文
【摘要】:步態(tài)失穩(wěn)在日常生活中經(jīng)常出現(xiàn),特別是在老年人和工人群體中,研究步態(tài)穩(wěn)定性生物力學(xué)因子可以提出防滑策略,為下肢助行裝置提供數(shù)據(jù)支撐。針對(duì)步態(tài)失穩(wěn)現(xiàn)象,國(guó)內(nèi)外學(xué)者已做了許多研究工作,但是尚未有建模模擬和考慮肌肉力的研究。本文采用試驗(yàn)、模擬和建模相結(jié)合的方法。研究步態(tài)失穩(wěn)后自主恢復(fù)平衡過程中,下肢各生物力學(xué)因子的變化規(guī)律,進(jìn)一步優(yōu)化防滑策略。本文招募10受試者,要求每位受試者分別在干燥與濕滑兩種介質(zhì)下按照正常步速行走,運(yùn)用Vicon三維運(yùn)動(dòng)捕捉系統(tǒng)、測(cè)力板、足底壓力系統(tǒng)和表面肌電信號(hào)系統(tǒng)分別采集了步態(tài)行為(穩(wěn)定步態(tài)和滑移步態(tài))的影像、足底壓力、運(yùn)動(dòng)學(xué)、動(dòng)力學(xué)參數(shù)數(shù)據(jù)和表面肌電信號(hào)的數(shù)據(jù),采用AnyBody建模仿真系統(tǒng)建立下肢模型,得到下肢肌肉活性、肌肉力、關(guān)節(jié)角度、關(guān)節(jié)力矩等參數(shù)結(jié)果,最后建立下肢七桿模型,提出將模擬得到的肌肉力帶入模型驗(yàn)證的方法。通過篩選、分析試驗(yàn)數(shù)據(jù)以及理論分析,可以得到一下結(jié)論:發(fā)生滑移恢復(fù)過程中,需要更大的地面支反力,并且在油面上行走,地面支反力的峰值更大。通過試驗(yàn)和模擬得到相關(guān)參數(shù)的結(jié)果分析,得出踝關(guān)節(jié)趾屈運(yùn)動(dòng)、膝關(guān)節(jié)屈曲運(yùn)動(dòng)和髖關(guān)節(jié)伸展運(yùn)動(dòng)有助于滑后自主恢復(fù)。發(fā)生滑移自主恢復(fù)過程中,踝關(guān)節(jié)跖屈肌群、膝關(guān)節(jié)屈曲肌群和髖關(guān)節(jié)伸展肌群肌肉力更大,相應(yīng)屈肌群力較小,同時(shí)可得出,股直肌在兩種情況下變化不大。提出簡(jiǎn)化肌肉,建立七桿模型,將肌肉力帶入研究動(dòng)態(tài)平衡的研究方法。通過對(duì)步態(tài)穩(wěn)定性生物力學(xué)因子的進(jìn)一步研究,明確了肌肉力的大小,為定量分析步態(tài)穩(wěn)定性個(gè)因子提供了方法,更具體的提出了防滑策略,可以對(duì)動(dòng)力式助行器的研究參數(shù)定量分析,同時(shí),也可以為康復(fù)醫(yī)療、行走輔具等提供更加具體的理論依據(jù)。
[Abstract]:Gait instability often occurs in daily life, especially in the elderly and workers. To study the biomechanical factors of gait stability, anti-skid strategies can be put forward to provide data support for walking aids of lower limbs. Scholars at home and abroad have done a lot of research work, but there has not been modeling simulation and muscle force. In this paper, the method of combining experiment, simulation and modeling is used to study the process of self-recovery balance after gait instability. In order to further optimize the anti-skid strategy, 10 subjects were recruited to walk at normal walking speed in dry and wet sliding media, and Vicon three-dimensional motion capture system was used. The plantar pressure system, the plantar pressure system and the surface electromyography system collected the gait behavior (steady gait and sliding gait), the plantar pressure, kinematics, dynamics parameters and surface EMG signal data, respectively. The lower limb model was established by AnyBody modeling and simulation system. The results of muscle activity, muscle force, joint angle, joint torque and other parameters were obtained. Finally, a seven-bar model of lower extremity was established. The method of bringing the simulated muscle force into the model verification is put forward. By screening, analyzing the test data and analyzing the theoretical analysis, we can draw a conclusion: in the course of the slip recovery, a larger ground branch reaction force is needed. And walking on the oil surface, the peak value of the reaction force of the ground support is greater. Through the test and simulation, the results of the related parameters are analyzed, and the ankle toe flexion motion is obtained. Flexion of knee joint and extension of hip joint are helpful for spontaneous recovery after sliding. In the process of slip recovery, the muscle strength of flexor muscle group, flexor muscle group and extensor muscle group of knee joint is greater, and the corresponding flexor muscle group force is smaller. At the same time, it can be concluded that the rectus femoris does not change much under two conditions. A simplified muscle, a seven-bar model and a method to study the dynamic balance of muscle force are proposed. Further study on biomechanical factors of gait stability is carried out. The size of muscle force is defined, which provides a method for quantitative analysis of gait stability factors, and puts forward anti-skid strategy more concretely, which can be used for quantitative analysis of research parameters of dynamic walker, and can also be used for rehabilitation medical treatment. Walking aids and so on to provide more specific theoretical basis.
【學(xué)位授予單位】:天津科技大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TB18
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 劉述芝;胡志剛;張健;;沖擊載荷作用下運(yùn)動(dòng)員下肢動(dòng)態(tài)響應(yīng)的逆向動(dòng)力學(xué)仿真[J];醫(yī)用生物力學(xué);2015年01期
2 何志強(qiáng);蔡探探;劉海斌;;性別因素對(duì)上下樓梯時(shí)足底壓力特性的影響[J];當(dāng)代體育科技;2014年27期
3 紀(jì)仲秋;李旭龍;姜桂萍;劉剛;;AnyBody仿真和驗(yàn)證的太極拳訓(xùn)練中下肢生物力學(xué)特征[J];中國(guó)康復(fù)醫(yī)學(xué)雜志;2014年09期
4 趙春輝;;某廠滑跌類其他傷害事故原因分析及對(duì)策措施[J];安全;2014年07期
5 丁晨;王君澤;高瞻;;基于AnyBody的汽車駕駛中人體腿部逆向動(dòng)力學(xué)仿真[J];中國(guó)生物醫(yī)學(xué)工程學(xué)報(bào);2013年01期
6 劉翠鮮;沈志祥;;老年跌倒的特點(diǎn)與預(yù)防策略[J];中國(guó)老年學(xué)雜志;2013年02期
7 喬剛;張建國(guó);劉合榮;;不同年齡健康人平地行走時(shí)足底壓力對(duì)比分析[J];天津科技大學(xué)學(xué)報(bào);2012年03期
8 蘇海龍;張大衛(wèi);李佳;;基于COM平衡恢復(fù)響應(yīng)的人體滑跌步態(tài)分析[J];生物醫(yī)學(xué)工程學(xué)雜志;2012年01期
9 徐光青;蘭月;黃東鋒;裴中;毛玉tb;;運(yùn)動(dòng)想象對(duì)腦卒中患者偏癱步態(tài)和步行能力的影響[J];中國(guó)康復(fù)醫(yī)學(xué)雜志;2010年10期
10 李艷霞;劉穎;韓濤;趙煥彬;霍洪峰;;肥胖青年平地自然行走時(shí)足底壓力分析與步態(tài)特征[J];中國(guó)組織工程研究與臨床康復(fù);2008年15期
相關(guān)博士學(xué)位論文 前2條
1 付根平;仿人機(jī)器人的步態(tài)規(guī)劃和步行控制研究[D];廣東工業(yè)大學(xué);2013年
2 姜海波;人體下肢關(guān)節(jié)系統(tǒng)的生物力學(xué)行為研究[D];中國(guó)礦業(yè)大學(xué);2008年
相關(guān)碩士學(xué)位論文 前4條
1 華猛;基于AnyBody生物力學(xué)仿真的駕駛姿勢(shì)舒適機(jī)理研究[D];吉林大學(xué);2015年
2 司瑩;基于足底壓力的坡道步態(tài)失穩(wěn)自適應(yīng)平衡研究[D];天津科技大學(xué);2015年
3 李玢瑤;人體下肢功能恢復(fù)輔助器具的安全動(dòng)作研究[D];天津科技大學(xué);2014年
4 洪曉明;人體下肢運(yùn)動(dòng)力學(xué)分析與建模[D];杭州電子科技大學(xué);2009年
,本文編號(hào):1636657
本文鏈接:http://sikaile.net/guanlilunwen/gongchengguanli/1636657.html