面向MES的離散制造系統(tǒng)可重構(gòu)技術(shù)及其仿真研究
本文選題:MES 切入點:離散制造車間 出處:《南京理工大學(xué)》2017年碩士論文 論文類型:學(xué)位論文
【摘要】:隨著德國"工業(yè)4.0"概念的提出,智能制造在國際上受到廣泛的關(guān)注。為提高制造業(yè)的國際競爭力,我國也以此為契機,提出了"中國制造2025"計劃,旨在加快新一代信息技術(shù)與制造技術(shù)融合發(fā)展。我國離散制造企業(yè)面對越發(fā)多元化、個性化的用戶需求,正逐漸從傳統(tǒng)的大規(guī)模流水線生產(chǎn)模式向單件、小批量、多品種的模式發(fā)展。被廣泛應(yīng)用于離散制造企業(yè)的MES也正由集成MES向智能MES轉(zhuǎn)變。為提升離散制造企業(yè)快速響應(yīng)市場需求的能力,本文開展了面向MES的離散制造系統(tǒng)可重構(gòu)技術(shù)及其仿真課題的研究。首先在多工件加工工藝約束條件下,提出了對工序和機器分別進行矩陣編碼的改進遺傳算法,設(shè)計了與編碼方式相對應(yīng)的選擇、交叉和變異操作,并增加保留算子,對每一代種群中的最優(yōu)個體進行保留。求得全局近似最優(yōu)解后,采用插入式貪婪解碼算法進行解碼,實現(xiàn)對加工工序以及加工機器的安排。然后在改進遺傳算法的基礎(chǔ)上,對面向MES的離散制造車間生產(chǎn)線重構(gòu)系統(tǒng)進行設(shè)計開發(fā),實現(xiàn)了設(shè)備資源管理、工件工序管理和針對不同期望目標重構(gòu)生產(chǎn)線等功能,通過算例仿真證實該改進算法的有效性。最后通過對加工機器和物流運輸設(shè)備建模,構(gòu)建制造車間的三維模型。根據(jù)重構(gòu)結(jié)果設(shè)置物流運輸模型的運動軌跡以及設(shè)備模型的加工流程,實現(xiàn)對重構(gòu)結(jié)果的可視化仿真,對合理安排離散制造車間的物流系統(tǒng)、加工次序等具有實用參考價值。
[Abstract]:With the development of the concept of "industry 4.0" in Germany, intelligent manufacturing has received extensive attention in the world. In order to improve the international competitiveness of manufacturing industry, China has also taken this opportunity to put forward the "made in China 2025" plan. In order to speed up the development of the new generation of information technology and manufacturing technology, the discrete manufacturing enterprises in our country are facing more and more diversified and individualized user needs, which are gradually changing from the traditional large-scale pipeline production mode to the single piece and small batch production mode. MES, which is widely used in discrete manufacturing enterprises, is changing from integrated MES to intelligent MES. In this paper, the reconfigurable technology of discrete manufacturing system oriented to MES and its simulation subject are studied. Firstly, an improved genetic algorithm for matrix coding of processes and machines is proposed under the condition of multi-workpiece processing process constraints. The selection, crossover and mutation operations corresponding to the coding mode are designed, and the reservation operator is added to preserve the optimal individuals in each generation population. After the global approximate optimal solution is obtained, the insertion greedy decoding algorithm is used to decode it. Then on the basis of improved genetic algorithm, the reconfiguration system of discrete manufacturing workshop production line oriented to MES is designed and developed, and the equipment resource management is realized. The process management of workpiece and the reconstruction of production line according to different expected targets, the effectiveness of the improved algorithm is verified by numerical simulation. Finally, the modeling of machining machine and logistics transportation equipment is carried out. The 3D model of manufacturing workshop is constructed. According to the result of reconfiguration, the movement track of logistics transportation model and the processing flow of equipment model are set up, the visual simulation of reconfiguration result is realized, and the logistics system of discrete manufacturing workshop is arranged reasonably. Processing order has practical reference value.
【學(xué)位授予單位】:南京理工大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TB49
【參考文獻】
相關(guān)期刊論文 前10條
1 李振;徐震浩;顧幸生;;解決零等待多產(chǎn)品廠調(diào)度問題的改進粒子群算法[J];計算機集成制造系統(tǒng);2014年07期
2 詹騰;張屹;朱大林;劉錚;鄭小東;;基于多策略差分進化的元胞多目標遺傳算法[J];計算機集成制造系統(tǒng);2014年06期
3 黃君政;李愛平;雷明;;基于NSGA-II的多目標設(shè)備動態(tài)布局方法[J];中國工程機械學(xué)報;2014年01期
4 劉洋洋;王華昌;李建軍;;基于遺傳蟻群算法的批量塑件混合流水生產(chǎn)調(diào)度研究[J];模具工業(yè);2013年05期
5 張屹;盧超;張虎;方子帆;;基于差分元胞多目標遺傳算法的車間布局優(yōu)化[J];計算機集成制造系統(tǒng);2013年04期
6 戰(zhàn)紅;楊建軍;;基于工序矩陣編碼遺傳算法的車間作業(yè)調(diào)度優(yōu)化[J];制造業(yè)自動化;2013年07期
7 謝皓;應(yīng)保勝;袁波;;基于遺傳算法的路徑柔性作業(yè)車間調(diào)度優(yōu)化[J];武漢科技大學(xué)學(xué)報;2012年06期
8 王柏琳;李鐵克;;等待時間受限的流水車間調(diào)度問題的若干性質(zhì)[J];系統(tǒng)工程理論與實踐;2012年06期
9 唐秋華;陳立;王雪蘭;;基于改進遺傳算法的車間布局重構(gòu)[J];武漢科技大學(xué)學(xué)報;2011年03期
10 田野;劉大有;;求解流水車間調(diào)度問題的混合粒子群算法[J];電子學(xué)報;2011年05期
,本文編號:1628247
本文鏈接:http://sikaile.net/guanlilunwen/gongchengguanli/1628247.html