基于ANSYS Workbench的空調(diào)配管振動(dòng)與應(yīng)力的研究
本文選題:空調(diào)配管 切入點(diǎn):有限元 出處:《華南理工大學(xué)》2015年碩士論文 論文類型:學(xué)位論文
【摘要】:配管設(shè)計(jì)是空調(diào)結(jié)構(gòu)設(shè)計(jì)的核心內(nèi)容之一,它對于空調(diào)工作的穩(wěn)定性具有至關(guān)重要的作用。除了滿足系統(tǒng)制冷要求和產(chǎn)品空間結(jié)構(gòu)需求,提高配管在空調(diào)工作過程中的可靠性、降低振動(dòng)和應(yīng)力一直是工程師們關(guān)注的焦點(diǎn)。傳統(tǒng)的配管設(shè)計(jì)和改進(jìn)主要依靠多次試制樣機(jī)、反復(fù)試驗(yàn)測試的方法來完成,這往往需要耗費(fèi)大量的人力財(cái)力。本文利用有限元技術(shù)對某型號空調(diào)樣機(jī)的動(dòng)態(tài)力學(xué)行為特征進(jìn)行研究。利用ANSYS軟件對其進(jìn)行了模態(tài)、諧響應(yīng)、及靜力學(xué)分析。本文的結(jié)果和結(jié)論能為廠家深入理解配管失效機(jī)制并改進(jìn)配管乃至整體結(jié)構(gòu)提供幫助。壓縮機(jī)機(jī)體的振動(dòng)、配管內(nèi)周期性氣流脈動(dòng)的沖擊以及管內(nèi)冷媒的持續(xù)高壓,是配管發(fā)生疲勞破壞的重要原因。本文首先對樣機(jī)的壓縮機(jī)及其管路系統(tǒng)進(jìn)行了建模,并進(jìn)行了模態(tài)分析,結(jié)果顯示系統(tǒng)的第七階模態(tài)頻率(46.34Hz)、第八階模態(tài)頻率(53.77Hz)與空調(diào)工作頻率(50Hz)比較接近,易導(dǎo)致共振。對壓縮機(jī)所受激勵(lì)進(jìn)行分解表明50Hz、100Hz、150Hz的激勵(lì)成分起主要作用。諧響應(yīng)的分析結(jié)果也顯示在50Hz激勵(lì)作用下,排氣口后第一個(gè)U型彎曲處(U型段)的變形和應(yīng)力非常大,這與系統(tǒng)的第七階模態(tài)振型比較接近,可能有共振現(xiàn)象發(fā)生。其次,對配管內(nèi)氣流脈動(dòng)產(chǎn)生的激勵(lì)進(jìn)行了計(jì)算,并將結(jié)果施加于配管各個(gè)彎頭處進(jìn)行諧響應(yīng)分析,發(fā)現(xiàn)上述U型段仍是變形的最大區(qū)域,應(yīng)力最大處位于配管與冷凝器的接口位置,但遠(yuǎn)小于壓縮機(jī)機(jī)體振動(dòng)所導(dǎo)致的應(yīng)力結(jié)果。排氣管段是管路系統(tǒng)壓力最大的部分。本文最后對該段進(jìn)行了流固耦合穩(wěn)態(tài)計(jì)算,結(jié)果顯示變形最大位置在上述U形管第一個(gè)彎頭處。各個(gè)彎頭以及管端固定處出現(xiàn)了應(yīng)力集中的現(xiàn)象。隨著彎頭過渡圓弧的增大,管路的變形和應(yīng)力逐漸減小。對比R10、R20、R30過渡圓弧彎頭的排氣管分析發(fā)現(xiàn),R20彎頭的變形和應(yīng)力均較小,過大的圓弧對于減小應(yīng)力應(yīng)變的效果并不明顯。本文建議采用R20的彎頭以滿足可靠性和經(jīng)濟(jì)性的要求。
[Abstract]:Piping design is one of the core contents of air conditioning structure design, which plays an important role in the stability of air conditioning. Reducing vibration and stress has always been the focus of engineers' attention. In this paper, finite element technique is used to study the dynamic mechanical behavior of a model air conditioning prototype. The modal, harmonic response of the prototype is analyzed by using ANSYS software. The results and conclusions of this paper can provide help for the manufacturers to understand the failure mechanism of piping and improve the piping and even the whole structure. The impact of periodic flow pulsation in the pipe and the continuous high pressure of the refrigerant in the pipe are the important reasons for the fatigue failure of the pipe. In this paper, the compressor and its pipeline system of the prototype are modeled, and the modal analysis is carried out. The results show that the 7th order modal frequency of the system is 46.34 Hz, and the 8th order modal frequency of the system is 53.77 Hz), which is close to the air conditioning frequency of 50 Hz. It is easy to cause resonance. The decomposition of the excitation of the compressor shows that the excitation composition of 50Hz / 100Hz / 100Hz plays a major role. The results of harmonic response analysis also show that the deformation and stress of the first U-shaped bend behind the outlet are very large under the excitation of 50Hz. This is close to the 7th order modal mode of the system, and there may be resonance. Secondly, the excitation caused by the flow pulsation in the pipe is calculated, and the results are applied to the harmonic response analysis at each bend of the pipe. It is found that the U section is still the largest deformation area and the maximum stress is located at the interface position between the pipe and the condenser. But it is far less than the stress result caused by the vibration of compressor block. The exhaust pipe section is the biggest pressure part of the pipeline system. Finally, the fluid-solid coupling steady state calculation of this section is carried out. The results show that the maximum deformation occurs at the first bend of the U-shaped tube, and the stress concentration occurs at each bend and at the end of the pipe. The deformation and stress of the pipeline gradually decreased. Comparing with the exhaust pipe analysis of the R10 / R20 / R30 transition arc elbow, it was found that the deformation and stress of the R20 elbow were smaller, The effect of excessive arc on reducing stress and strain is not obvious. In this paper, it is suggested that R20 elbows be adopted to meet the requirements of reliability and economy.
【學(xué)位授予單位】:華南理工大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2015
【分類號】:TB657.2
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 康方;范晉偉;;基于ANSYS的數(shù)控機(jī)床動(dòng)態(tài)特性分析[J];機(jī)械設(shè)計(jì)與制造;2008年07期
2 盧劍偉,吳文新,陳天寧,馮源;有限元分析軟件ANSYS在空調(diào)配管設(shè)計(jì)中的應(yīng)用研究[J];機(jī)械科學(xué)與技術(shù);2004年05期
3 薛瑋飛;張智;陳進(jìn);楊九銘;劉曉明;;空調(diào)配管空間結(jié)構(gòu)的動(dòng)態(tài)仿真與優(yōu)化[J];機(jī)械強(qiáng)度;2011年02期
4 張祉yP;;小型滾動(dòng)轉(zhuǎn)子式壓縮機(jī)的動(dòng)力計(jì)算及結(jié)構(gòu)參數(shù)選擇[J];化工與通用機(jī)械;1978年07期
5 韋英奇,張奠磐,李治文;空調(diào)機(jī)系統(tǒng)管振動(dòng)分析和減振措施[J];流體機(jī)械;2001年06期
6 黨錫淇,陳守五,夏永源;孔板消減氣流脈動(dòng)的機(jī)理、計(jì)算與試驗(yàn)研究[J];壓縮機(jī)技術(shù);1979年02期
7 陳玲莉,,謝壯寧;壓縮機(jī)管道系統(tǒng)振動(dòng)激勵(lì)的優(yōu)化研究[J];應(yīng)用力學(xué)學(xué)報(bào);1995年03期
8 井海蛟;;氣流脈動(dòng)引起往復(fù)壓縮機(jī)管道系統(tǒng)振動(dòng)的分析[J];科技創(chuàng)新導(dǎo)報(bào);2012年03期
9 喻迪W
本文編號:1592202
本文鏈接:http://sikaile.net/guanlilunwen/gongchengguanli/1592202.html