天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁(yè) > 管理論文 > 工程管理論文 >

基于線性混合模型的高光譜圖像壓縮感知研究

發(fā)布時(shí)間:2018-03-09 10:07

  本文選題:高光譜圖像 切入點(diǎn):壓縮感知 出處:《西北工業(yè)大學(xué)》2015年博士論文 論文類(lèi)型:學(xué)位論文


【摘要】:隨著高光譜圖像分辨率的不斷提高,成像光譜儀獲取的高光譜數(shù)據(jù)急劇增加,海量的高光譜數(shù)據(jù)給機(jī)載或星載遙感成像系統(tǒng)的數(shù)據(jù)存儲(chǔ)、傳輸和處理帶來(lái)巨大壓力。傳統(tǒng)的高光譜遙感成像面臨高速率采樣、海量數(shù)據(jù)的存儲(chǔ)和傳輸?shù)入y以突破的難題。壓縮感知理論作為一種新穎的數(shù)據(jù)采集理論將數(shù)據(jù)的采樣和壓縮過(guò)程巧妙地結(jié)合起來(lái),實(shí)現(xiàn)采樣率低于傳統(tǒng)奈奎斯特率的數(shù)據(jù)采集和少量觀測(cè)數(shù)據(jù)的精確重構(gòu),降低了對(duì)傳感器的要求,有效避免了追求高分辨率帶來(lái)的軟硬件成本問(wèn)題。壓縮感知理論的誕生為解決傳統(tǒng)高光譜遙感成像面臨的瓶頸問(wèn)題提供了有效的解決途徑,將壓縮感知技術(shù)應(yīng)用于高光譜遙感成像的研究已成為當(dāng)前高光譜數(shù)據(jù)采集研究的熱點(diǎn)。本文以高光譜數(shù)據(jù)的壓縮采樣模式和圖像的重建算法為研究對(duì)象,以高光譜圖像的線性混合模型為契機(jī),致力于尋求高效的高光譜壓縮采樣方式和快速、高精度的壓縮感知重建算法,并針對(duì)當(dāng)前成熟的推掃式和擺掃式高光譜數(shù)據(jù)采集模式研究了壓縮感知成像的實(shí)現(xiàn)方案。論文的主要工作及取得的創(chuàng)新性成果如下:1.針對(duì)高光譜圖像空間或光譜維壓縮采樣形式單一、采樣效率低的問(wèn)題,在分析研究空間壓縮采樣域數(shù)據(jù)特性的基礎(chǔ)上,提出了一種高光譜圖像的空譜壓縮采樣方案。高光譜數(shù)據(jù)采樣先進(jìn)行空間壓縮采樣,再對(duì)壓縮后的數(shù)據(jù)進(jìn)行光譜維壓縮采樣。實(shí)驗(yàn)結(jié)果表明,空譜壓縮采樣有助于提高采樣效率,改善重構(gòu)質(zhì)量。2.針對(duì)傳統(tǒng)高光譜壓縮感知直接重構(gòu)原始圖像數(shù)據(jù)量大的問(wèn)題,在光譜維壓縮采樣數(shù)據(jù)的重構(gòu)過(guò)程中應(yīng)用線性混合模型,提出了已知端元譜和未知端元譜的壓縮感知重構(gòu)算法,以及基于線性光譜庫(kù)混合模型的壓縮感知重構(gòu)算法。應(yīng)用線性混合模型將高光譜圖像分離成豐度系數(shù)和端元特征兩個(gè)小數(shù)據(jù)量的子集,利用混合像元分解算法估計(jì)豐度,稀疏優(yōu)化算法提取端元,再通過(guò)估計(jì)的豐度和提取的端元來(lái)合成原圖像。實(shí)驗(yàn)結(jié)果表明所提的重構(gòu)算法由于估計(jì)的兩子集數(shù)據(jù)量小,運(yùn)行速度上有較大幅度的提升,同時(shí)能獲得更高的峰值信噪比和更好的重建效果。3.針對(duì)高光譜圖像壓縮感知重構(gòu)精度低、計(jì)算復(fù)雜度高的問(wèn)題,提出了基于波段的分布式壓縮感知和基于像元的分布式壓縮感知方案。采樣時(shí)將高光譜圖像分成關(guān)鍵波段圖像與壓縮感知波段圖像或者關(guān)鍵像元與壓縮感知像元,并對(duì)不同類(lèi)別數(shù)據(jù)采用不同的采樣方式。重構(gòu)時(shí)利用線性混合模型分離不同類(lèi)別的觀測(cè)數(shù)據(jù),進(jìn)行端元提取和豐度估計(jì),線性譜解混算法的應(yīng)用使得欠定問(wèn)題的優(yōu)化轉(zhuǎn)化成超定方程的求解,大幅提高了重構(gòu)算法的運(yùn)行速度和精度。在基于波段的分布式壓縮采樣基礎(chǔ)上,提出基于迭代預(yù)測(cè)的分布式壓縮感知重構(gòu)算法,進(jìn)一步提高了高光譜壓縮感知的重構(gòu)精度。多個(gè)高光譜數(shù)據(jù)集的實(shí)驗(yàn)結(jié)果表明,所提的兩種分布式壓縮感知方案重構(gòu)的平均信噪比遠(yuǎn)遠(yuǎn)高于壓縮投影主成分分析算法和三維壓縮采樣算法,且重構(gòu)速度比三維壓縮采樣算法有數(shù)量級(jí)的提升。4.針對(duì)高光譜圖像壓縮測(cè)量矩陣難以光學(xué)實(shí)現(xiàn)的問(wèn)題,構(gòu)造了實(shí)現(xiàn)空譜聯(lián)合壓縮采樣的測(cè)量矩陣,提出了高光譜圖像的空譜聯(lián)合壓縮感知方案。通過(guò)分析空間壓縮采樣的豐度系數(shù)的數(shù)據(jù)特性,構(gòu)造了便于光學(xué)實(shí)現(xiàn)的、具有特殊結(jié)構(gòu)的空間測(cè)量矩陣。重構(gòu)時(shí)采用線性混合模型通過(guò)提取端元和估計(jì)豐度恢復(fù)原圖像。實(shí)驗(yàn)結(jié)果表明,高光譜圖像采用空譜聯(lián)合的壓縮采樣,重構(gòu)時(shí)利用線性混合模型進(jìn)行分離重構(gòu),能實(shí)現(xiàn)快速、高精度的數(shù)據(jù)采集與重建的目標(biāo)。5.基于擺掃式和推掃式高光譜遙感數(shù)據(jù)采集模式,研究了壓縮感知成像的實(shí)現(xiàn)方案,設(shè)計(jì)了實(shí)現(xiàn)擺掃式基于像元的分布式壓縮采樣成像系統(tǒng)模型、推掃式光譜維和空譜聯(lián)合壓縮采樣成像系統(tǒng)模型。采用棱鏡、柱面透鏡、DMD等光電器件,能使采集的數(shù)據(jù)量大幅減少而不需要進(jìn)行其它壓縮處理,既節(jié)省了存儲(chǔ)空間和傳輸資源,又降低了數(shù)據(jù)壓縮算法帶來(lái)的功耗,有利于機(jī)載或星載高光譜成像的實(shí)現(xiàn)。仿真所設(shè)計(jì)成像系統(tǒng)模型壓縮觀測(cè)數(shù)據(jù),采用本文所設(shè)計(jì)的重構(gòu)算法進(jìn)行重構(gòu),雖然重構(gòu)性能稍有下降,但仍能高精度的恢復(fù)原數(shù)據(jù)。
[Abstract]:With the continuous improvement of image resolution hyperspectral imaging spectrometer, hyperspectral data acquisition has increased dramatically, the hyperspectral data for massive airborne or satellite remote sensing imaging system data storage, transmission and processing of huge pressure. The traditional hyperspectral remote sensing imaging at high sampling rate, the problem of massive data storage and transmission is difficult to break the compressed sensing theory. As a kind of novel data acquisition theory data sampling and compression process combined skillfully, achieve the sampling rate is lower than the accurate reconstruction of data acquisition and a small amount of observation data of the traditional Nyquist rate, reduce the requirement of sensor, effectively avoid the pursuit of cost of software and hardware problems brought by high resolution. Compressed sensing theory has provided the effective way to solve the bottleneck problem of traditional hyperspectral remote sensing imaging, the compressed sensing technology Study on technique applied to hyperspectral remote sensing imaging has become a hotspot of current research. The hyperspectral data acquisition based on compression sampling mode and image reconstruction algorithm for hyperspectral data as the research object, using linear mixed models of hyperspectral image as an opportunity to seek efficient compression of hyperspectral sampling and fast, compressed sensing the reconstruction algorithm with high precision, and in view of the current mature pushbroom scanning and high spectral data acquisition mode of implementation of compressed sensing imaging. The main work and innovative results are as follows: 1. for hyperspectral image space or spectral compression sampling in single form, the problem of low efficiency of sampling. Based on the analysis of spatial domain data compression sampling characteristics, presents a high spectral image space spectral compression sampling scheme. The hyperspectral data sampling to space compression Sampling of compressed data in spectral compression sampling. The experimental results show that the spectrum of air compressed sampling is helpful to improve the sampling efficiency, improve the quality of reconstructed.2. in traditional hyperspectral compressed sensing to reconstruct the original image directly to large amount of data compression using linear mixed model reconstruction process of sampling data in the spectral dimension put forward, known and unknown endmember spectral element end of compressed sensing reconstruction algorithm in spectrum, and compressed sensing reconstruction algorithm of linear spectral library based on the hybrid model. The separation of application of linear mixed model of hyperspectral image into subsets abundance coefficient and endmember features two small amount of data, using mixed pixel decomposition algorithm to estimate the abundance. The optimization algorithm of endmember extraction by sparse, endmember abundance and extraction estimation to the synthesis of the original image. Experimental results show that the proposed reconstruction algorithm due to estimation of the two data sets Small, greatly enhance the speed, also can get higher PSNR and better reconstruction effect of.3. for hyperspectral image compressed sensing reconstruction precision is low, the computational complexity of the problem, put forward the distributed compressed sensing band and pixel distributed compressed sensing scheme based on the sampling. Hyperspectral image is divided into key band image and compressed sensing image band or key pixel and compressed sensing pixels, and using different sampling methods for different categories of data. Data reconstruction using linear mixed model from different categories, endmember extraction and abundance estimation, linear spectral unmixing algorithm makes the optimal solution using the underdetermined problem into solving over determined equations, greatly improve the reconstruction speed and accuracy. Based on the band distributed compressed sampling based on the proposed base In the iterative prediction of distributed compressed sensing reconstruction algorithm, further improve the reconstruction accuracy of hyperspectral compressed sensing. A plurality of hyperspectral data sets. The experimental results show that the average signal reconstruction of two kinds of distributed compressed sensing scheme of the proposed noise ratio is much higher than the compression projection principal component analysis algorithm and three-dimensional reconstruction and compression sampling algorithm. Faster than the 3D compressive sampling algorithm of magnitude increase.4. for hyperspectral image compression measurement matrix is difficult to optical implementation problems, constructed to realize spatial spectral joint compression sampling measurement matrix, the hyperspectral image compressed sensing scheme combined with spatial spectral data characteristics. Through the analysis of space compression abundance coefficient sampling, construct for optical implementation, space measurement matrix with special structure. The reconstruction using a linear mixed model by extracting and recovering the original image endmember abundance estimation Like. The experimental results show that the hyperspectral image compression using spatial spectral joint sampling, reconstruction using linear mixed model for separation of reconstruction, to achieve rapid,.5. data acquisition and reconstruction of high precision sweeping and pushbroom hyperspectral remote sensing data acquisition mode based on the research, the realization scheme of compressed sensing imaging that is designed to achieve the scanning type pixel distributed compressed sampling imaging system based on the model of pushbroom spectral and spatial spectral compression joint sampling imaging system model. Using the cylindrical lens, prism, DMD and other optoelectronic devices, can make the collection of data without the need for a substantial reduction in the amount of other compression processing, can save storage space and transmission resources, and reduce the power data compression algorithm, is beneficial to the realization of airborne or spaceborne hyperspectral imaging. The imaging system design model using the data compression. The reconstructed algorithm is reconstructed, although the reconfiguration performance is slightly reduced, it can still restore the original data with high precision.

【學(xué)位授予單位】:西北工業(yè)大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2015
【分類(lèi)號(hào)】:TP751

【相似文獻(xiàn)】

相關(guān)期刊論文 前10條

1 諶德榮;宮久路;陳乾;曹旭平;;基于樣本分割的快速高光譜圖像異常檢測(cè)支持向量數(shù)據(jù)描述方法[J];兵工學(xué)報(bào);2008年09期

2 蒲曉豐;雷武虎;張林虎;蔣奇材;;基于Fukunaga-Koontz變換的高光譜圖像異常檢測(cè)[J];紅外技術(shù);2010年04期

3 成寶芝;郭宗光;;高光譜圖像波段間相關(guān)特性研究[J];大慶師范學(xué)院學(xué)報(bào);2013年06期

4 楊龍;易宏杰;李因彥;;遙感高光譜圖像赤潮識(shí)別[J];傳感器世界;2007年05期

5 汪倩;陶鵬;;結(jié)合空間信息的高光譜圖像快速分類(lèi)方法[J];微計(jì)算機(jī)信息;2010年21期

6 王立國(guó);孫杰;肖倩;;結(jié)合空-譜信息的高光譜圖像分類(lèi)方法[J];黑龍江大學(xué)自然科學(xué)學(xué)報(bào);2010年06期

7 馮朝麗;朱啟兵;朱曉;黃敏;;基于光譜特征的玉米品種高光譜圖像識(shí)別[J];江南大學(xué)學(xué)報(bào)(自然科學(xué)版);2012年02期

8 付歡;龍海南;韓曉霞;;基于冗余字典的高光譜圖像的稀疏分解[J];河北軟件職業(yè)技術(shù)學(xué)院學(xué)報(bào);2013年04期

9 耿修瑞,張霞,陳正超,張兵,鄭蘭芬,童慶禧;一種基于空間連續(xù)性的高光譜圖像分類(lèi)方法[J];紅外與毫米波學(xué)報(bào);2004年04期

10 張綺瑋;機(jī)載高光譜遙感圖像處理軟件系統(tǒng)[J];紅外;2005年02期

相關(guān)會(huì)議論文 前10條

1 張兵;王向偉;鄭蘭芬;童慶禧;;高光譜圖像地物分類(lèi)與識(shí)別研究[A];成像光譜技術(shù)與應(yīng)用研討會(huì)論文集[C];2004年

2 高連如;張兵;孫旭;李山山;張文娟;;高光譜數(shù)據(jù)降維與分類(lèi)技術(shù)研究[A];第八屆成像光譜技術(shù)與應(yīng)用研討會(huì)暨交叉學(xué)科論壇文集[C];2010年

3 王成;何偉基;陳錢(qián);;基于波段重組和小波變換的高光譜圖像嵌入式壓縮方法[A];黑龍江、江蘇、山東、河南、江西 五省光學(xué)(激光)聯(lián)合學(xué)術(shù)‘13年會(huì)論文(摘要)集[C];2013年

4 孫蕾;羅建書(shū);;基于分類(lèi)預(yù)測(cè)的高光譜遙感圖像無(wú)損壓縮[A];第一屆建立和諧人機(jī)環(huán)境聯(lián)合學(xué)術(shù)會(huì)議(HHME2005)論文集[C];2005年

5 楊勇;劉木華;鄒小蓮;苗蓬勃;趙珍珍;;基于高光譜圖像技術(shù)的獼猴桃硬度品質(zhì)檢測(cè)[A];走中國(guó)特色農(nóng)業(yè)機(jī)械化道路——中國(guó)農(nóng)業(yè)機(jī)械學(xué)會(huì)2008年學(xué)術(shù)年會(huì)論文集(下冊(cè))[C];2008年

6 張曉紅;張立福;王晉年;童慶禧;;HJ-1A衛(wèi)星高光譜遙感圖像質(zhì)量綜合評(píng)價(jià)[A];第八屆成像光譜技術(shù)與應(yīng)用研討會(huì)暨交叉學(xué)科論壇文集[C];2010年

7 高東生;高連知;;基于獨(dú)立分量分析的高光譜圖像目標(biāo)盲探測(cè)方法研究[A];國(guó)家安全地球物理叢書(shū)(八)——遙感地球物理與國(guó)家安全[C];2012年

8 馮維一;陳錢(qián);何偉基;;基于小波稀疏的高光譜目標(biāo)探測(cè)算法[A];黑龍江、江蘇、山東、河南、江西 五省光學(xué)(激光)聯(lián)合學(xué)術(shù)‘13年會(huì)論文(摘要)集[C];2013年

9 彭妮娜;易維寧;方勇華;;基于核函數(shù)的高光譜圖像信息提取研究[A];光子科技創(chuàng)新與產(chǎn)業(yè)化——長(zhǎng)三角光子科技創(chuàng)新論壇暨2006年安徽博士科技論壇論文集[C];2006年

10 蒲曉豐;雷武虎;黃濤;王迪;;基于穩(wěn)健背景子空間的高光譜圖像異常檢測(cè)[A];中國(guó)光學(xué)學(xué)會(huì)2010年光學(xué)大會(huì)論文集[C];2010年

相關(guān)博士學(xué)位論文 前10條

1 普晗曄;高光譜遙感圖像的解混理論和方法研究[D];復(fù)旦大學(xué);2014年

2 王亮亮;非線性流形結(jié)構(gòu)在高光譜圖像異常檢測(cè)中的應(yīng)用研究[D];國(guó)防科學(xué)技術(shù)大學(xué);2014年

3 賀智;改進(jìn)的經(jīng)驗(yàn)?zāi)B(tài)分解算法及其在高光譜圖像分類(lèi)中的應(yīng)用[D];哈爾濱工業(yè)大學(xué);2014年

4 魏然;基于成像機(jī)理分析的高光譜圖像信息恢復(fù)研究[D];哈爾濱工業(yè)大學(xué);2015年

5 葉珍;高光譜圖像特征提取與分類(lèi)算法研究[D];西北工業(yè)大學(xué);2015年

6 馮婕;基于軟計(jì)算和互信息理論的遙感圖像地物分類(lèi)[D];西安電子科技大學(xué);2014年

7 孫濤;快速多核學(xué)習(xí)分類(lèi)研究及應(yīng)用[D];西安電子科技大學(xué);2015年

8 李昌國(guó);基于譜間和校正相關(guān)性的高光譜圖像壓縮方法研究及GPU并行實(shí)現(xiàn)[D];成都理工大學(xué);2015年

9 徐速;基于壓縮感知的高光譜圖像稀疏解混方法研究[D];重慶大學(xué);2015年

10 南一冰;星載推掃型高光譜運(yùn)動(dòng)成像誤差建模與高精度校正技術(shù)研究[D];北京理工大學(xué);2015年

相關(guān)碩士學(xué)位論文 前10條

1 趙偉彥;果蔬干燥過(guò)程中的品質(zhì)無(wú)損檢測(cè)技術(shù)研究[D];江南大學(xué);2015年

2 馬亞楠;果蔬中內(nèi)部害蟲(chóng)的高光譜圖像檢測(cè)技術(shù)研究[D];江南大學(xué);2015年

3 劉大洋;基于近紅外光譜和高光譜圖像技術(shù)無(wú)損識(shí)別獼猴桃膨大果[D];西北農(nóng)林科技大學(xué);2015年

4 王坤;高光譜圖像異常目標(biāo)檢測(cè)及光譜成像在偽裝評(píng)估方面的應(yīng)用研究[D];南京理工大學(xué);2015年

5 王U喺,

本文編號(hào):1588071


資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/guanlilunwen/gongchengguanli/1588071.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶(hù)c556a***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com