氧化石墨烯基復(fù)合納米纖維膜的制備及應(yīng)用
發(fā)布時(shí)間:2018-02-12 17:47
本文關(guān)鍵詞: 半導(dǎo)體 光催化 氧化石墨烯 金納米顆粒 電極 硫化鋅 鈷酸鋅 出處:《浙江理工大學(xué)》2017年碩士論文 論文類型:學(xué)位論文
【摘要】:環(huán)境污染越來越嚴(yán)重,可利用能源越來越少等問題已經(jīng)成為當(dāng)下全球性最為顯著的問題。因此尋求簡單高效的環(huán)境治理方法,開發(fā)新型能源材料成為現(xiàn)代科學(xué)家們研究的熱點(diǎn)。半導(dǎo)體光催化劑由于其獨(dú)特的性能在治理環(huán)境方面展示出了巨大的潛能,一般的半導(dǎo)體光催化劑具有較寬的能帶,需要很強(qiáng)的光能量才能夠激發(fā)。為了更好的利用光能源,研究可以被更多波長光激發(fā)的光催化劑成為眾多學(xué)者的研究目標(biāo)。另外,目前的光催化劑一般是粉末狀的,有的甚至是納米級(jí)級(jí)別。由于光催化劑的粒徑太小,比表面能大,導(dǎo)致光催化劑在使用過程中容易聚集,使得光催化劑利用率不高,重復(fù)使用性能差。目前研究出的電極材料存在功率密度低,導(dǎo)電性能差,重復(fù)使用性能差等缺陷。本論文中主要通過氧化石墨烯基碳材料來制備半導(dǎo)體光催化劑材料和電極材料。具體來說主要分為三個(gè)部分內(nèi)容:1.用簡單的抽濾法,將氧化石墨烯(GO)和聚丙烯酰胺(PAA)制備了復(fù)合膜(GO/PAA),再在其表面光沉積金納米粒子形成擁有高柔性的復(fù)合膜(GO/PAA/Au)。通過光催化還原對(duì)硝基苯酚發(fā)現(xiàn),GO/PAA/Au復(fù)合膜大約30分鐘將對(duì)硝基苯酚(濃度為1.73 mmol/L)完全還原,經(jīng)5次循環(huán)使用后還原能力保持在96%以上。2.通過靜電紡絲法制備GO-PAN纖維膜,再經(jīng)過煅燒生成GO-CNFs復(fù)合納米纖維膜,最后通過溶劑熱法得到GO/ZnS-CNFs復(fù)合膜。采用場發(fā)射掃描電子顯微鏡、透射電子顯微鏡、X射線電子衍射儀、紫外/可見分光光度計(jì)等對(duì)樣品的形貌、結(jié)構(gòu)及組成進(jìn)行表征,并通過光催化對(duì)甲基苯胺的氧化和光降解無色的苯酚對(duì)樣品的光催化性能進(jìn)行評(píng)估,發(fā)現(xiàn)其在60分鐘內(nèi)能將濃度為0.002 mol/L的對(duì)甲基苯胺和濃度為0.001 mol/L的苯酚溶液氧化。3.通過靜電紡絲法,溶劑熱法和煅燒過程,將3D海膽狀ZnCo_2O_4生長在Ag-GO-CNFs上。得到ZnCo_2O_4/Ag-GO-CNFs復(fù)合膜,并對(duì)樣品的形貌,結(jié)構(gòu)進(jìn)行了分析。通過電化學(xué)工作站和藍(lán)電電池測(cè)試系統(tǒng)對(duì)樣品進(jìn)行電化學(xué)性能測(cè)試,發(fā)現(xiàn)ZnCo_2O_4/Ag-GO-CNFs復(fù)合膜比電容在20 mVs~(-1)時(shí)為459.48 mAhg~(-1)。
[Abstract]:Environmental pollution is becoming more and more serious, and the problems of less and less available energy have become the most prominent problems in the world today. Therefore, we seek simple and efficient methods of environmental governance. The development of new energy materials has become a hot topic for modern scientists. Semiconductor photocatalysts have shown great potential in environmental control because of their unique properties, and general semiconductor photocatalysts have a wide energy band. In order to make better use of the light energy, the study of photocatalysts that can be excited by more wavelengths of light has become the research target of many scholars. In addition, the current photocatalysts are generally powdered. Some are even nanoscale. Because the size of the photocatalyst is too small and the surface energy is larger than the surface energy, the photocatalyst is easy to gather in the process of use, and the utilization rate of the photocatalyst is not high. Low power density and poor conductivity of the electrode materials developed at present. In this thesis, semiconductor photocatalyst materials and electrode materials are prepared by graphene oxide. Specifically, they are divided into three parts: 1. The composite membrane was prepared from graphene oxide (GOO) and polyacrylamide (PAA). Then gold nanoparticles were photodeposited on the surface to form a highly flexible composite membrane. By photocatalytic reduction of p-nitrophenol, it was found that the goo / PAA / Au composite membrane would be prepared for about 30 minutes. Total reduction of p-nitrophenol (1.73 mmol / L), After 5 cycles, the reduction ability was kept above 96%. The GO-PAN fiber membrane was prepared by electrospinning method, then calcined to form GO-CNFs composite nanofiber membrane. Finally, the GO/ZnS-CNFs composite membrane was obtained by solvothermal method. Field emission scanning electron microscopy (SEM) was used. The morphology, structure and composition of the samples were characterized by transmission electron microscope (TEM), X-ray electron diffractometer (XRD) and ultraviolet / visible spectrophotometer (UV / vis). The photocatalytic properties of the samples were evaluated by photocatalytic oxidation of p-methylaniline and photodegradation of colorless phenol. It was found that the p-methylaniline with a concentration of 0.002 mol/L and phenol solution with a concentration of 0.001 mol/L could be oxidized in 60 minutes. Through electrospinning, solvothermal method and calcination process, 3D sea urchin ZnCo_2O_4 was grown on Ag-GO-CNFs. The ZnCo_2O_4/Ag-GO-CNFs composite membrane was obtained. The morphology and structure of the sample were analyzed. The electrochemical performance of the sample was tested by electrochemical workstation and blue cell test system. It was found that the specific capacitance of ZnCo_2O_4/Ag-GO-CNFs composite film was 459.48 mAhg-1 / 1 when the capacitance of the composite film was 20 MV / L.
【學(xué)位授予單位】:浙江理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TB383.2;O643.36
【參考文獻(xiàn)】
相關(guān)期刊論文 前3條
1 于永亞;高小欽;廖晨;崔一平;張家雨;;CdS∶Mn/ZnS核殼結(jié)構(gòu)納米晶體的場致發(fā)光性質(zhì)[J];無機(jī)化學(xué)學(xué)報(bào);2015年05期
2 Bolin Tang;Guohua Jiang;Zhen Wei;Xia Li;Xiaohong Wang;Tengteng Jiang;Wenxing Chen;Junmin Wan;;Preparation of N-Doped Bi_2WO_6 Microspheres for Efficient Visible Light-Induced Photocatalysis[J];Acta Metallurgica Sinica(English Letters);2014年01期
3 陳曉慧;柳麗芬;楊鳳林;張興文;余濟(jì)美;;CdS/TiO_2光催化去除水體中氨氮的研究[J];感光科學(xué)與光化學(xué);2007年02期
,本文編號(hào):1506203
本文鏈接:http://sikaile.net/guanlilunwen/gongchengguanli/1506203.html
最近更新
教材專著