基于遺傳算法的多目標(biāo)柔性資源調(diào)度研究
本文關(guān)鍵詞: 柔性車間調(diào)度問題 多目標(biāo)優(yōu)化改進(jìn) 遺傳算法 指數(shù)分布 出處:《天津大學(xué)》2014年碩士論文 論文類型:學(xué)位論文
【摘要】:在全球發(fā)展深化的趨勢(shì)下,我國制造業(yè)正在面臨著巨大的沖擊,所以提高生產(chǎn)效率以及資源利用率,促進(jìn)轉(zhuǎn)型升級(jí)已經(jīng)成為制造業(yè)發(fā)展的必然趨勢(shì)。其中柔性車間調(diào)度問題(FJSP)是該領(lǐng)域的經(jīng)典問題,而多目標(biāo)柔性車間調(diào)度問題在調(diào)度時(shí)要衡量各個(gè)目標(biāo),增加了調(diào)度的難度,是原有FJSP的深化。此類研究已經(jīng)成為了制造業(yè)的重點(diǎn)問題。在現(xiàn)有傳統(tǒng)調(diào)度問題的研究中,一般認(rèn)為工件加工時(shí)間是定值,但是結(jié)合生產(chǎn)實(shí)際情況來看,加工時(shí)間往往是波動(dòng)的,而不可能是單一的定值。所以本文在詳細(xì)文獻(xiàn)綜述的基礎(chǔ)之上,擬提出一種改進(jìn)的遺傳算法來解決此問題,以優(yōu)化現(xiàn)有算法。本文的研究將基于加工時(shí)間服從指數(shù)分布假設(shè)的多目標(biāo)柔性車間調(diào)度問題為對(duì)象,旨在平衡機(jī)臺(tái)負(fù)荷和減小訂單延誤時(shí)間。在研究過程中將OOC編碼與RC編碼技術(shù)結(jié)合用于產(chǎn)生初始化群體,在保證種群多樣性的同時(shí)提高算法的效率。同時(shí)考慮到遺傳算法本身的局限性,采用線性變換,適應(yīng)度變換,自適應(yīng)交叉、變異,使遺傳算法前期保持種群的多樣性,避免早熟,后期提高搜索的效率,更快找到最優(yōu)解。經(jīng)過算法驗(yàn)證,本文提出的改進(jìn)遺傳算法能很好地實(shí)現(xiàn)柔性車間調(diào)度問題的多目標(biāo)優(yōu)化,并在算法性能以及算法收斂速度方面均優(yōu)于自適應(yīng)遺傳算法與標(biāo)準(zhǔn)遺傳算法,有效的優(yōu)化了遺傳算法,對(duì)制造業(yè)實(shí)踐的生產(chǎn)活動(dòng)具有一定的指導(dǎo)意義。
[Abstract]:Under the trend of global development, China's manufacturing industry is facing a huge impact, so improve production efficiency and resource utilization. Promotion of transformation and upgrading has become an inevitable trend in the development of manufacturing industry, in which flexible shop scheduling problem (FJSP) is a classic problem in this field. The multi-objective flexible job shop scheduling problem has to measure each target in scheduling, which increases the difficulty of scheduling. It is the deepening of the original FJSP. This kind of research has become the key problem in the manufacturing industry. In the existing research of traditional scheduling problem, it is generally considered that the processing time of the workpiece is a fixed value, but according to the actual situation of production. Processing time is often fluctuating, but can not be a single fixed value. Therefore, based on the detailed literature review, this paper proposes an improved genetic algorithm to solve this problem. In order to optimize the existing algorithms, the research of this paper will be based on the hypothesis of processing time from the exponential distribution of multi-objective flexible job shop scheduling problem as an object. In order to balance the load of the machine and reduce the delay time of the order, the OOC coding and RC coding technology are combined to generate initialization group in the research process. Considering the limitations of genetic algorithm, linear transformation, fitness transformation, adaptive crossover and mutation are adopted. The genetic algorithm can keep the diversity of population, avoid precocity, improve the efficiency of search and find the optimal solution more quickly. The improved genetic algorithm proposed in this paper can achieve multi-objective optimization of flexible job shop scheduling problem, and is superior to adaptive genetic algorithm and standard genetic algorithm in the performance and convergence speed of the algorithm. The genetic algorithm is optimized effectively, which has a certain guiding significance to the production activities of manufacturing practice.
【學(xué)位授予單位】:天津大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2014
【分類號(hào)】:TB497;TP18
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 廖珊;翟所霞;魯玉軍;;基于改進(jìn)遺傳算法的柔性作業(yè)車間調(diào)度方法研究[J];機(jī)電工程;2014年06期
2 彭建剛;劉明周;張銘鑫;張璽;葛茂根;;基于改進(jìn)非支配排序的云模型進(jìn)化多目標(biāo)柔性作業(yè)車間調(diào)度[J];機(jī)械工程學(xué)報(bào);2014年12期
3 馬雪麗;曹德弼;劉曉冰;;面向柔性工藝的作業(yè)車間調(diào)度問題混合遺傳算法[J];計(jì)算機(jī)應(yīng)用研究;2014年05期
4 戰(zhàn)紅;楊建軍;;基于工序矩陣編碼遺傳算法的車間作業(yè)調(diào)度優(yōu)化[J];制造業(yè)自動(dòng)化;2013年07期
5 王圣堯;王凌;許燁;周剛;;求解混合流水車間調(diào)度問題的分布估計(jì)算法[J];自動(dòng)化學(xué)報(bào);2012年03期
6 劉愛軍;楊育;邢青松;陸惠;張煜東;;含精英策略的小生境遺傳退火算法研究及其應(yīng)用[J];中國機(jī)械工程;2012年05期
7 劉愛軍;楊育;邢青松;陸惠;張煜東;;多目標(biāo)模糊柔性車間調(diào)度中的多種群遺傳算法[J];計(jì)算機(jī)集成制造系統(tǒng);2011年09期
8 張鐵男;韓兵;于渤;;生產(chǎn)能力約束條件下的柔性作業(yè)車間調(diào)度優(yōu)化[J];系統(tǒng)工程理論與實(shí)踐;2011年03期
9 李建鋒;彭艦;;云計(jì)算環(huán)境下基于改進(jìn)遺傳算法的任務(wù)調(diào)度算法[J];計(jì)算機(jī)應(yīng)用;2011年01期
10 黃偉婷;;自適應(yīng)遺傳算法在流水車間優(yōu)化調(diào)度中的應(yīng)用[J];計(jì)算機(jī)與現(xiàn)代化;2010年09期
,本文編號(hào):1474836
本文鏈接:http://sikaile.net/guanlilunwen/gongchengguanli/1474836.html