基于形狀記憶合金的高聳化工塔設(shè)備振動(dòng)被動(dòng)控制的研究
本文關(guān)鍵詞: 高聳化工塔 形狀記憶合金 振動(dòng)控制 Newmark積分法 MATLAB 出處:《青島科技大學(xué)》2014年碩士論文 論文類型:學(xué)位論文
【摘要】:塔設(shè)備是石油化工行業(yè)中一種重要的設(shè)備,化工塔的外形往往呈高柔狀態(tài),工作場所往往是空曠的野外地區(qū),受到的外載荷除了自身的重力等靜載荷作用外,在遇到強(qiáng)風(fēng)和地震還會(huì)發(fā)生動(dòng)力破壞。所以,在進(jìn)行化工塔設(shè)計(jì)完正式安裝之前需要進(jìn)行動(dòng)力計(jì)算。本文以一種高聳的蒸餾塔為研究背景,基于對形狀記憶合金(Shape Memory Alloy,簡稱SMA)優(yōu)良的耗能減振性能的研究,,設(shè)計(jì)一種適合于高聳化工塔的振動(dòng)控制方案,建立SMA控制的高聳化工塔的動(dòng)力學(xué)模型,分析將SMA施加到化工塔上的減振效果,以期獲得對實(shí)際工程具有參考價(jià)值的計(jì)算結(jié)果。本文的主要工作如下: (1)第1章綜述了高聳結(jié)構(gòu)的振動(dòng)控制研究現(xiàn)狀,舉例高聳結(jié)構(gòu)振動(dòng)控制方法,比較傳統(tǒng)振動(dòng)控制方法和新型振動(dòng)控制方法的不同,通過比較發(fā)現(xiàn)新型振動(dòng)控制方法具有較好的工程適用性;介紹了SMA的工程振動(dòng)控制的研究現(xiàn)狀,通過分析形狀記憶合金常用的振動(dòng)控制手段為本文控制方案提供參考依據(jù)。 (2)第2章詳細(xì)介紹了形狀記憶合金的基本力學(xué)性能,包括超彈性效應(yīng)、形狀記憶效應(yīng)等。分析了描述形狀記憶合金常用的本構(gòu)模型,對Brinson模型進(jìn)行了數(shù)值計(jì)算,結(jié)果表明該模型與實(shí)驗(yàn)數(shù)據(jù)的擬合度較高,適用于后面的數(shù)值分析。 (3)第3章設(shè)計(jì)了一種高聳化工塔的SMA控制方案,采用了一種拉索結(jié)構(gòu)對高聳化工塔進(jìn)行振動(dòng)控制,將SMA拉索加到化工塔的頂端,使之能夠隨化工塔一起發(fā)生變形,從而利用形狀記憶合金的超彈性特性實(shí)現(xiàn)吸能減振的效果。 (4)第4章在第3章設(shè)計(jì)方案的基礎(chǔ)上分析控制裝置的減振效果,建立了該控制系統(tǒng)的動(dòng)力方程,運(yùn)用newmark積分法對該動(dòng)力方程進(jìn)行計(jì)算,并用MATLAB軟件編寫程序?qū)υ搫?dòng)力方程進(jìn)行了數(shù)值模擬,首先分析了SMA拉索作用下化工塔的自由振動(dòng)和諧響應(yīng)結(jié)果,然后將拉索用普通材料替代后比較兩種拉索的自由振動(dòng)和諧響應(yīng)結(jié)果。
[Abstract]:Tower equipment is an important equipment in the petrochemical industry, the shape of the chemical tower is often in a flexible state, the work place is often open field, the external load is not only its own gravity and other static loads. Dynamic failure will occur in strong wind and earthquake. Therefore, dynamic calculation should be carried out before the design and installation of chemical tower is completed. This paper takes a kind of high distillation column as the research background. Based on the study of the excellent energy dissipation and vibration absorption performance of shape Memory alloy (SMAs), a vibration control scheme suitable for the tall chemical tower was designed. The dynamic model of the towering chemical tower controlled by SMA is established, and the vibration absorption effect of SMA applied to the tower is analyzed. The main work of this paper is as follows: In chapter 1, the research status of vibration control of high-rise structures is summarized, and the difference between traditional vibration control methods and new vibration control methods is compared. Through comparison, it is found that the new vibration control method has better engineering applicability. This paper introduces the research status of engineering vibration control of SMA, and provides the reference for the control scheme by analyzing the vibration control methods commonly used in shape memory alloy. In chapter 2, the basic mechanical properties of shape memory alloy are introduced in detail, including hyperelastic effect, shape memory effect and so on. The constitutive models used to describe shape memory alloy are analyzed. The Brinson model is numerically calculated, and the results show that the model has a good fit with the experimental data and is suitable for the subsequent numerical analysis. In chapter 3, a SMA control scheme of the towering chemical tower is designed. A kind of cable structure is used to control the vibration of the tower, and the SMA cable is added to the top of the tower. It can be deformed along with the chemical tower, so that the hyperelastic properties of shape memory alloy can be used to achieve the effect of energy absorption and vibration reduction. Chapter 4 analyzes the vibration absorption effect of the control device on the basis of the design scheme in chapter 3, establishes the dynamic equation of the control system, and calculates the dynamic equation by using the newmark integral method. The numerical simulation of the dynamic equation is carried out with MATLAB software. Firstly, the harmonious response results of the chemical tower under the action of SMA cables are analyzed. Then, the free vibration and harmonic response of the two cables are compared after the cable is replaced by ordinary material.
【學(xué)位授予單位】:青島科技大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2014
【分類號】:TG139.6;TB535
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 倪立峰,李愛群,左曉寶,陳慶福,李秋勝;形狀記憶合金超彈性阻尼性能的試驗(yàn)研究[J];地震工程與工程振動(dòng);2002年06期
2 李惠,毛晨曦;新型SMA耗能器及結(jié)構(gòu)地震反應(yīng)控制試驗(yàn)研究[J];地震工程與工程振動(dòng);2003年01期
3 歐進(jìn)萍,吳斌;組合鋼板耗能器——一種新型耗能減震裝置[J];地震工程與工程振動(dòng);1997年01期
4 鄧洪洲,朱松曄,王肇民;大跨越輸電塔線體系風(fēng)振控制[J];電力建設(shè);2002年08期
5 韓玉林,李愛群,林萍華,王世棟,張志強(qiáng),張曉格,黃鎮(zhèn);基于形狀記憶合金耗能器的框架振動(dòng)控制試驗(yàn)研究[J];東南大學(xué)學(xué)報(bào)(自然科學(xué)版);2000年04期
6 陸飛,程文椡,李愛群;南京電視塔風(fēng)振主動(dòng)控制的實(shí)施方案研究[J];東南大學(xué)學(xué)報(bào)(自然科學(xué)版);2002年05期
7 陳永祁;杜義欣;;液體粘滯阻尼器在結(jié)構(gòu)工程中的最新進(jìn)展[J];工程抗震與加固改造;2006年03期
8 王克海;李茜;;橋梁抗震的研究進(jìn)展[J];工程力學(xué);2007年S2期
9 章叢俊;李愛群;趙明;;軟鋼阻尼器耗能減震結(jié)構(gòu)的研究與應(yīng)用綜述[J];工業(yè)建筑;2006年09期
10 任文杰;李宏男;;單自由度SMA阻尼結(jié)構(gòu)在高斯白噪聲激勵(lì)下的平穩(wěn)隨機(jī)振動(dòng)分析[J];工程力學(xué);2014年02期
相關(guān)博士學(xué)位論文 前1條
1 王偉;形狀記憶合金的本構(gòu)模型及試驗(yàn)研究[D];大連理工大學(xué);2012年
本文編號:1471646
本文鏈接:http://sikaile.net/guanlilunwen/gongchengguanli/1471646.html