并聯(lián)混合動力汽車能量控制策略研究
[Abstract]:With the rapid development of world economy, energy crisis and environmental pollution have become increasingly prominent. Parallel hybrid vehicles (HEVs) have attracted much attention because of their advantages of environmental protection, energy saving and relatively mature technology. The energy control strategy of the parallel hybrid electric vehicle is an important factor that affects the energy consumption of the vehicle. Therefore, under the premise of satisfying the power performance of the vehicle, Optimizing the energy control strategy of parallel hybrid electric vehicle (HEV) is of great practical significance in controlling the energy crisis and realizing the sustainable development of the environment. In this paper, the energy control system of parallel hybrid electric vehicle is taken as the research object, and the distribution of engine torque and motor torque is studied deeply. On the basis of analyzing the driving system structure and combination mode of parallel hybrid electric vehicle, the mathematical model of engine, motor, battery, wheel and dynamic equation of transmission system are established. The optimal mathematical model of energy control strategy is constructed. Because the energy control system of parallel hybrid electric vehicle has the characteristics of dynamic nonlinearity, the fuzzy neural network algorithm is used to optimize the distribution of engine torque and motor torque. The energy control strategy based on fuzzy logic algorithm and the energy control strategy based on fuzzy neural network algorithm are designed respectively, which provides the theoretical basis for the simulation platform. In the energy control strategy of fuzzy neural network, according to the optimal mathematical model of the control strategy of parallel hybrid electric vehicle, a forward neural network composed of input layer, hidden layer and output layer is constructed by using compensatory neural network structure. The input layer of the network corresponds to the fuzzy process of the fuzzy logic algorithm, the hidden layer of the network corresponds to the fuzzy reasoning process, and the output layer of the network corresponds to the process of resolving the fuzzy logic. In order to solve the problem of the unity of the interface between the neural network node and the fuzzy logic input and output, the input and output variables are quantized by the quantization formula, and then the self-learning and adaptive ability of the neural network is utilized. The fuzzy rules and membership functions are generated automatically, and the center and width of the input and output membership functions of the neural network are optimized continuously. In order to improve the accuracy of the system and speed up the convergence, the neural network optimizes the energy control strategy by using the learning algorithm of dynamically adjusting the step size to compensate for the gradient descent. Taking the Toyota Prius car as an example, the backward simulation model of the whole vehicle is established under the environment of ADVISOR2002 software, which includes engine, motor, battery, transmission system and vehicle driving dynamics model. It provides a necessary simulation platform for the research and development of vehicle control strategy, and based on this simulation platform, under typical NEDC cycle conditions, The fuzzy logic energy control strategy and the fuzzy neural network energy control strategy are simulated. The simulation results verify the effectiveness of the fuzzy neural network energy control strategy. The fuzzy neural network (FNN) energy control strategy can ensure that the engine and motor can work in the high efficiency area at the same time, thus improving the fuel economy and emission performance of the whole vehicle. The research on the fuzzy neural network energy control strategy is of great significance to the independent research and development of new energy saving and environmental protection vehicles in China, to improve the design level of hybrid electric vehicle energy control system, and to construct the automobile electronic development platform with independent intellectual property rights.
【學位授予單位】:吉林大學
【學位級別】:碩士
【學位授予年份】:2013
【分類號】:U469.7
【參考文獻】
相關(guān)期刊論文 前7條
1 楊書強;牛一川;;并聯(lián)式混合動力汽車能量管理策略的控制仿真[J];機械與電子;2011年11期
2 周志堅,毛宗源;一種最優(yōu)模糊神經(jīng)網(wǎng)絡(luò)控制器[J];控制與決策;2000年03期
3 紀峻嶺;齊曉杰;朱榮福;;豐田混合動力汽車驅(qū)動系統(tǒng)結(jié)構(gòu)分析及性能研究[J];內(nèi)燃機;2007年06期
4 黃振躍;張好明;孫玉坤;;新型并聯(lián)混合動力汽車驅(qū)動系統(tǒng)研究[J];微電機;2008年05期
5 鄧亞東;陳田俊;蘇楚奇;;并聯(lián)混合動力驅(qū)動系統(tǒng)模糊控制策略研究[J];武漢理工大學學報;2007年06期
6 錢立軍,襲著永,金德全;混合動力電動汽車控制策略的設(shè)計與仿真[J];系統(tǒng)仿真學報;2005年03期
7 彭濤,陳全世;并聯(lián)混合動力電動汽車的模糊能量管理策略[J];中國機械工程;2003年09期
相關(guān)博士學位論文 前2條
1 申彩英;串聯(lián)混合動力汽車能量優(yōu)化管理策略研究[D];天津大學;2010年
2 吳劍;并聯(lián)式混合動力汽車能量管理策略優(yōu)化研究[D];山東大學;2008年
相關(guān)碩士學位論文 前10條
1 田彤;混合動力重型商用車部件選型及性能仿真[D];武漢理工大學;2011年
2 王聰慧;混合動力電動汽車能量管理系統(tǒng)模糊控制策略[D];河南科技大學;2011年
3 田甜;單軸并聯(lián)式混合動力汽車能量管理策略的研究[D];南京林業(yè)大學;2011年
4 胡仕泳;基于模糊神經(jīng)網(wǎng)絡(luò)的立輥傳動智能控制系統(tǒng)的設(shè)計[D];武漢科技大學;2005年
5 劉勝鐵;并聯(lián)混合動力客車模糊控制策略的研究[D];吉林大學;2006年
6 明紹民;并聯(lián)混合動力汽車模糊邏輯控制策略的研究[D];吉林大學;2007年
7 劉宏偉;基于單片機的模糊控制方法及應(yīng)用研究[D];武漢理工大學;2007年
8 劉文杰;混聯(lián)型混合動力汽車控制策略優(yōu)化研究[D];重慶大學;2007年
9 倪穎倩;電動汽車關(guān)鍵技術(shù)[D];南京理工大學;2008年
10 朱傳高;并聯(lián)混合動力汽車遺傳模糊控制策略的優(yōu)化研究[D];吉林大學;2009年
本文編號:2342636
本文鏈接:http://sikaile.net/falvlunwen/zhishichanquanfa/2342636.html