超聲隨鉆井徑檢測儀的信號檢測與數(shù)字化處理
發(fā)布時(shí)間:2018-06-23 01:02
本文選題:隨鉆超聲測井 + 壓控放大 ; 參考:《長江大學(xué)》2013年碩士論文
【摘要】:在油氣田勘探、開發(fā)過程中,鉆井之后必須進(jìn)行測井,以便了解地層的含油氣情況。測井資料的獲取總是在鉆井完工之后,利用電纜將儀器放入井中進(jìn)行測量。然而,在某些情況下,如斜度超過65度的大斜度井或水平井,用電纜很難將儀器放下去。由于鉆井過程中要用鉆井液循環(huán)來帶出鉆碎的巖屑,鉆井液濾液總要侵入地層,所以在鉆完之后再測井得到的地層的各種參數(shù)與剛鉆開地層時(shí)有所差別。而用隨鉆測井獲得的地層參數(shù)是剛鉆開的地層參數(shù),它最接近地層的原始狀態(tài),用于對復(fù)雜地層的含油、氣評價(jià)比一般電纜測井更有利。目前,我國隨鉆測井技術(shù)在應(yīng)用過程中一直面臨一系列技術(shù)難題,所以研發(fā)具有自主知識產(chǎn)權(quán)的超聲隨鉆測徑儀器具有重要意義。 超聲隨鉆井徑檢測儀主要是通過檢測回波時(shí)間和回波幅度信息來反映井下井壁的結(jié)構(gòu)和特征。儀器整體設(shè)計(jì)可以分為以下幾個(gè)模塊:激發(fā)與接收模塊、信號采集模塊、控制處理與存儲(chǔ)模塊、傳輸模塊、電源模塊。 激發(fā)接收模塊:由FPGA產(chǎn)生激勵(lì)信號激發(fā),換能器接收回波信號送入信號采集模塊進(jìn)行相關(guān)處理。 信號采集模塊:接收來自激發(fā)接收模塊的回波信號,按回波衰減規(guī)律對信號進(jìn)行壓控放大和帶通濾波,然后進(jìn)行電平極性轉(zhuǎn)換后送到A/D轉(zhuǎn)換器對數(shù)字化。 控制處理與存儲(chǔ)模塊:根據(jù)地面系統(tǒng)發(fā)出的命令,產(chǎn)生相應(yīng)控制指令和時(shí)序邏輯,控制井下電路按要求的模式工作,同時(shí)將溫度信號和井下電源電壓信息數(shù)字化,然后將檢測的回波數(shù)據(jù)、溫度數(shù)據(jù)、方位信息進(jìn)行格式編排和數(shù)據(jù)組幀,進(jìn)行存儲(chǔ)和抽樣發(fā)送,最后還要在該模塊對回波數(shù)據(jù)進(jìn)行實(shí)時(shí)相關(guān)處理,提取井徑信息。 傳輸模塊:主要實(shí)現(xiàn)采用QBUS,總線或RS485總線結(jié)構(gòu)與地面系統(tǒng)進(jìn)行通信和數(shù)據(jù)傳輸,同時(shí)為了便于井下電路的調(diào)試設(shè)計(jì)一個(gè)RS232通信接口,便于與上位機(jī)通信。 電源模塊:提供井下電路需要的三組電源。 本文首先介紹了隨鉆測井技術(shù)在國內(nèi)外的發(fā)展情況,通過分析闡述超聲測井儀器研制的必要性,指出在儀器研發(fā)過程中所需達(dá)到的各項(xiàng)指標(biāo)以及所面臨的各項(xiàng)難題;接著提出了系統(tǒng)設(shè)計(jì)的總體方案,講述了激發(fā)與接收模塊、信號采集模塊具體硬件電路設(shè)計(jì),FPGA控制各模塊邏輯時(shí)序設(shè)計(jì);最后,通過實(shí)驗(yàn)驗(yàn)證硬件電路設(shè)計(jì)的可行性,并提出了本設(shè)計(jì)中所存在的不足以及值得改進(jìn)的地方。 與傳統(tǒng)的電纜超聲成像測井儀相比其主要技術(shù)改進(jìn)在于: 1.在電子器件的選擇上盡量采用軍工級芯片,采用高集成度器件代替分離原件,器件的封裝上盡量選用貼片。 2.降低換能器頻率,以利于重泥漿環(huán)境下的測量。 3.設(shè)計(jì)了新的激發(fā)電路,提高了電聲轉(zhuǎn)換的效率,增強(qiáng)了激發(fā)聲波的能量。 4.根據(jù)超聲波在介質(zhì)中隨時(shí)間的衰減規(guī)律,采用高性能壓控放大器,隨時(shí)間的變化對回波信號進(jìn)行連續(xù)可變增益放大,補(bǔ)償泥漿介質(zhì)對信號的衰減。
[Abstract]:In the course of exploration in oil and gas fields, well logging must be carried out after drilling in order to understand the oil and gas in the formation. The acquisition of well logging data is always measured in the well after the completion of the drilling. In some cases, in some cases, such as a large inclined or horizontal well with an inclination of more than 65 degrees, it is difficult to put the instrument in a cable. In the course of drilling, drilling fluid should be circulated to bring out the broken bits of rock, and the filtrate of the drilling fluid always invades the stratum, so the parameters of the formation are different from that of the rigid drilling, and the formation parameters obtained by the drilling well logging are the formation parameters of the rigid drilling, which is closest to the original formation. The evaluation of oil and gas in complex strata is more favorable than general cable logging. At present, a series of technical problems have been faced in the application of drilled logging technology in China. Therefore, it is of great significance to develop an ultrasonic drilling measuring instrument with independent intellectual property rights.
The ultrasonic drilling diameter detector mainly reflects the structure and characteristics of the downhole wall by detecting the echo time and echo amplitude information. The overall design of the instrument can be divided into the following modules: the module of excitation and reception, the module of signal acquisition, the module of control processing and storage, the transmission module and the power supply module.
The excitation receiving module is generated by FPGA, and the transducer receives the echo signal and sends it to the signal acquisition module for processing.
Signal acquisition module: receive echo signals from the excitation receiving module, press and amplify the signal according to the law of echo attenuation, and then convert the level polarity to the A/D converter to digitize.
Control processing and storage module: according to the commands issued by the ground system, the corresponding control instructions and timing logic are generated, and the downhole circuit is controlled to work according to the required mode. At the same time, the temperature signal and the downhole power supply voltage information are digitized. Then the detected echo data, the temperature data, and the azimuth information are arranged and the data group frames are entered. Row storage and sample sending, and finally, the real-time correlation processing of echo data is carried out in the module, and the well diameter information is extracted.
Transmission module: the main realization is to use QBUS, bus or RS485 bus structure to communicate with the ground system for communication and data transmission. At the same time, in order to facilitate the debugging of the downhole circuit, a RS232 communication interface is designed to facilitate communication with the host computer.
Power module: three sets of power supply for downhole circuits.
This paper first introduces the development of drilled logging technology at home and abroad, analyzes and expounds the necessity of the development of ultrasonic logging instruments, points out all the indicators needed in the process of research and development of the instrument and the difficult problems it faces, and then puts forward the overall plan of the system design, and describes the excitation and reception modules and the signal acquisition. The module specific hardware circuit design, FPGA control the logic timing design of each module. Finally, the feasibility of the hardware circuit design is verified by the experiment, and the shortcomings in this design and the place to be improved are put forward.
Compared with the traditional cable ultrasonic imaging logging tool, its main technical improvement lies in:
1. in the selection of electronic devices, we should use military chip as far as possible and replace the original parts with high integration devices.
2. reduce transducer frequency to facilitate measurement in heavy mud environment.
3. a new excitation circuit is designed, which improves the efficiency of the electro acoustic conversion and enhances the energy of the excited sound wave.
4. according to the attenuation law of ultrasonic wave in the medium with time, the high performance pressure control amplifier is used. The continuous variable gain amplification is carried out to the echo signal with the change of time to compensate the attenuation of the mud medium to the signal.
【學(xué)位授予單位】:長江大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2013
【分類號】:TE927.9;TN911.7
【參考文獻(xiàn)】
相關(guān)期刊論文 前9條
1 高澤溪,高成;直接數(shù)字頻率合成器(DDS)及其性能分析[J];北京航空航天大學(xué)學(xué)報(bào);1998年05期
2 魯放,屈萬里,余厚全,蔡麗斌;小井眼多功能超聲成像測井儀[J];測井技術(shù);1999年06期
3 胡學(xué)紅,李長文,魏海云;影響超聲成像效果的模擬實(shí)驗(yàn)[J];測井技術(shù);2002年06期
4 張辛耘;王敬農(nóng);郭彥軍;;隨鉆測井技術(shù)進(jìn)展和發(fā)展趨勢[J];測井技術(shù);2006年01期
5 張辛耘;郭彥軍;王敬農(nóng);;隨鉆測井的昨天、今天和明天[J];測井技術(shù);2006年06期
6 張建軍,潘恒超,李浩;超聲成像測井工作原理與影響因素[J];聲學(xué)與電子工程;2001年02期
7 王若;隨鉆測井技術(shù)發(fā)展史[J];石油儀器;2001年02期
8 姜國;井下儀器高溫電路設(shè)計(jì)方法研究[J];石油儀器;2005年03期
9 鄒德江,范宜仁,鄧少貴;隨鉆測井技術(shù)最新進(jìn)展[J];石油儀器;2005年05期
,本文編號:2055015
本文鏈接:http://sikaile.net/falvlunwen/zhishichanquanfa/2055015.html
最近更新
教材專著