微波管永磁聚焦系統(tǒng)三維有限元理論及CAD技術(shù)研究
本文選題:微波管 + 永磁聚焦系統(tǒng) ; 參考:《電子科技大學(xué)》2016年博士論文
【摘要】:作為一類重要的微波/毫米波電真空器件,微波管在衛(wèi)星通信、雷達(dá)、電子對抗等領(lǐng)域具有不可替代的作用。永磁聚焦系統(tǒng)是微波管中使用頻率最高的一種聚焦系統(tǒng),也是微波管電子光學(xué)系統(tǒng)的組成部分之一。它主要被用于維持電子注形狀,保證電子注的穩(wěn)定傳輸。其設(shè)計的優(yōu)劣對微波管的性能有直接影響。微波管磁系統(tǒng)的設(shè)計以往是通過一定假設(shè)條件下經(jīng)過簡化而得到的近似式,它只能是給出磁系統(tǒng)結(jié)構(gòu)、磁體形狀尺寸的一種簡便估算方法,更精確的設(shè)計還是需要通過計算機(jī)模擬來實現(xiàn)。此外,一些新型永磁聚焦結(jié)構(gòu)如Wiggler,PMQ,PCM等,都具有非對稱的特性,必須進(jìn)行全三維的磁場仿真模擬,以便設(shè)計、驗證和優(yōu)化磁聚焦結(jié)構(gòu)。因此,永磁系統(tǒng)的CAD軟件是微波管設(shè)計工作必備的基礎(chǔ)工具之一,它為永磁系統(tǒng)的設(shè)計提供強(qiáng)有力的保障。本論文就是在這樣的背景下立題的,在深入研究微波管永磁聚焦系統(tǒng)的有限元理論基礎(chǔ)上,開發(fā)了微波管永磁聚焦系統(tǒng)磁場分析軟件,本文主要工作及創(chuàng)新點如下:1、對微波管永磁聚焦系統(tǒng)的磁矢勢和磁標(biāo)勢有限元理論進(jìn)行研究。首先從麥克斯韋方程組出發(fā),建立了永磁聚焦系統(tǒng)磁場求解的磁矢勢有限元理論和磁標(biāo)勢有限元理論。通過一個單磁環(huán)的仿真,表明在三維的有限元仿真中磁標(biāo)勢有限元方法計算效率高于磁矢勢有限元方法。2、對非線性材料的磁場計算方法進(jìn)行研究,提出了處理非線性極靴材料牛頓迭代+拋物線算法。通過一個四周期永磁聚焦系統(tǒng)的仿真,分析了這幾種非線性材料的模擬計算方法的收斂性和計算效率,結(jié)果表明牛頓迭代+拋物線算法的效果最好。同時,本文還提出了專門處理非線性永磁材料的迭代算法,通過一個單磁環(huán)實例驗證了算法的收斂特性。3、對開域磁場問題的邊界處理技術(shù)進(jìn)行研究。從磁矢勢和磁標(biāo)勢有限元理論出發(fā),建立了軸對稱永磁結(jié)構(gòu)和非軸對稱永磁結(jié)構(gòu)的漸近邊界條件。對于軸對稱結(jié)構(gòu),通過單磁環(huán)和三周期永磁結(jié)構(gòu)的模擬,結(jié)果表明隨真空大小變化漸進(jìn)邊界計算結(jié)果收斂會快于要截斷邊界。對于非軸對稱永磁結(jié)構(gòu),通過三周期永磁結(jié)構(gòu),帶開口磁環(huán)的三周期永磁結(jié)構(gòu)和Wiggler結(jié)構(gòu)的模擬,結(jié)果表明隨真空大小變化漸近邊界技術(shù)會略優(yōu)于諾曼邊界技術(shù)和截斷邊界技術(shù)。4、基于永磁系統(tǒng)某些結(jié)構(gòu)的對稱性,在三維永磁系統(tǒng)模擬器中采用了局部對稱的計算方法,在不損失計算精度的前提下,通過對稱性減小計算區(qū)域來提高計算效率,減少計算資源消耗。5、對網(wǎng)格自適應(yīng)的后驗誤差估計和網(wǎng)格加密策略進(jìn)行研究,設(shè)計了一個能夠有效控制網(wǎng)格加密數(shù)的加密策略。通過PPM和Wiggler結(jié)構(gòu)分析了本文網(wǎng)格自適應(yīng)方法的收斂特性。同時,本文還把網(wǎng)格自適應(yīng)技術(shù)應(yīng)用到電子光學(xué)和高頻電路的有限元模擬。另外,本文針對電子槍和螺旋線高頻結(jié)構(gòu)提出了專門的網(wǎng)格加密處理技術(shù)。6、在上述微波管永磁系統(tǒng)有限元理論及關(guān)鍵技術(shù)基礎(chǔ)上,開發(fā)了具有完全自主知識產(chǎn)權(quán)的三維微波管永磁系統(tǒng)磁場仿真設(shè)計軟件——永磁系統(tǒng)磁場模擬器(MFS)。MFS包含二維和三維的磁場計算程序,支持對永磁系統(tǒng)涉及的結(jié)構(gòu)參數(shù)和材料參數(shù)進(jìn)行優(yōu)化,能夠方便的把永磁系統(tǒng)計算結(jié)果導(dǎo)入本實驗室開發(fā)的電子光學(xué)模擬器(EOS)和注波互作用模擬器(BWIS)進(jìn)行電子束傳輸及注波互作用模擬。
[Abstract]:As an important class of microwave / millimeter wave electrical vacuum devices, microwave tubes have an irreplaceable role in the fields of satellite communication, radar and electronic countermeasures. The permanent magnetic focusing system is one of the most frequently used focusing systems in microwave tubes, and is also one of the components of the electronic optical system of the microwave tube. It is mainly used to maintain the electron beam shape. The design has a direct effect on the performance of the microwave tube. The design of the microwave tube magnetic system is the approximate formula obtained by simplification under certain assumptions. It can only be a simple method of estimating the structure of the magnetic system and the shape size of the magnet. More accurate design or need is needed. In addition, some new permanent magnetic focusing structures, such as Wiggler, PMQ, PCM and so on, have asymmetric characteristics. All three dimensional simulation of magnetic field must be carried out in order to design, verify and optimize the magnetic focusing structure. Therefore, the CAD software of the permanent magnet system is one of the basic tools for the design of the microwave tube. The design of the magnetic system provides a strong guarantee. This paper is based on this background. On the basis of the deep study of the finite element theory of the microwave tube permanent magnetic focusing system, the software of the magnetic field analysis of the permanent magnetic focusing system of the microwave tube is developed. The main work and innovation are as follows: 1, the magnetic vector potential and the magnetic vector potential of the permanent magnetic focusing system of the microwave tube The magnetic potential finite element theory is studied. First, starting from the Maxwell equation group, the magnetic vector potential finite element theory and the magnetic potential finite element theory for the magnetic field solution of the permanent magnetic focusing system are established. The simulation of a single magnetic ring shows that the calculation efficiency of the magnetic potential finite element method in the three-dimensional finite element simulation is higher than the magnetic vector potential finite element method. Method.2, the method of magnetic field calculation for nonlinear material is studied, and the Newton iteration + parabola algorithm for nonlinear pole material is proposed. Through a simulation of a four period permanent magnetic focusing system, the convergence and calculation efficiency of the simulation calculation methods of these nonlinear materials are analyzed. The results show that the Newton iteration + parabola algorithm is used. At the same time, an iterative algorithm for dealing with nonlinear permanent magnets is also proposed. Through an example of a single magnetic loop, the convergence property of the algorithm.3 is verified. The boundary treatment technology for the open domain magnetic field problem is studied. From the magnetic vector potential and the magnetic potential finite element theory, the axisymmetric permanent magnetic structure and non axisymmetric permanent magnet are established. The asymptotic boundary condition of the structure. For the axisymmetric structure, the simulation of the single magnetic ring and three periodic permanent magnetic structure shows that the convergence of the asymptotic boundary calculation with the change of the vacuum is faster than the truncated boundary. For the non axisymmetric permanent magnetic structure, the three periodic permanent magnetic structure and the Wiggler junction with the open magnetic ring are carried out through the three periodic permanent magnetic structure. The simulation results show that the asymptotic boundary technology with the change of vacuum size is slightly better than the Norman boundary technique and the truncated boundary technique.4. Based on the symmetry of some structures of the permanent magnet system, the local symmetry calculation method is adopted in the three-dimensional permanent magnet system simulator, and the calculation area is reduced by symmetry without loss calculation precision. In order to improve the computational efficiency and reduce the consumption of computing resource.5, the adaptive posterior error estimation and the grid encryption strategy are studied, and an encryption strategy that can effectively control the number of grid encryption is designed. The convergence characteristics of the grid adaptive square method are analyzed by PPM and Wiggler structure. The technology is applied to the finite element simulation of electronic optics and high frequency circuits. In addition, a special grid encryption technology.6 is proposed for the high frequency structure of the electron gun and the spiral line. On the basis of the finite element theory and key technology of the above microwave tube permanent magnet system, a three dimensional microwave tube permanent magnet system with complete independent intellectual property rights is developed. The permanent magnetic field simulator (MFS).MFS contains two and three dimensional magnetic field calculation program, which supports the optimization of the structure parameters and material parameters involved in the permanent magnet system, and can easily import the results of the permanent magnetic system into the open electronic optical simulator (EOS) and the injection wave interaction mode in our laboratory. Simulator (BWIS) is used to simulate electron beam propagation and beam wave interaction.
【學(xué)位授予單位】:電子科技大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2016
【分類號】:TN12
【參考文獻(xiàn)】
相關(guān)期刊論文 前8條
1 丁耀根;劉濮鯤;張兆傳;王勇;沈斌;;大功率微波真空電子器件的應(yīng)用[J];強(qiáng)激光與粒子束;2011年08期
2 范永民;;微波管器件現(xiàn)狀及技術(shù)發(fā)展分析[J];真空電子技術(shù);2009年05期
3 胡權(quán);黃桃;楊中海;李斌;李建清;廖莉;肖禮;朱小芳;;行波管周期永磁聚焦系統(tǒng)模擬軟件的研制[J];強(qiáng)激光與粒子束;2008年02期
4 鄔顯平;世紀(jì)之交的微波真空器件[J];真空電子技術(shù);2003年01期
5 王建華,楊磊,沈為平;有限元后驗誤差估計方法的研究進(jìn)展[J];力學(xué)進(jìn)展;2000年02期
6 劉福貴,楊慶新;三維永久磁鐵磁場的標(biāo)量磁位數(shù)值計算[J];河北工業(yè)大學(xué)學(xué)報;1997年03期
7 胡恩球,陳賢珍,周克定;電磁場有限元計算后驗誤差估計與自適應(yīng)新方法[J];中國電機(jī)工程學(xué)報;1997年02期
8 錢金根,,倪光正,程衛(wèi)英;單標(biāo)量磁位法在靜態(tài)磁場數(shù)值計算中的應(yīng)用[J];中國電機(jī)工程學(xué)報;1995年04期
相關(guān)會議論文 前1條
1 廖復(fù)疆;;微波真空電子器件的發(fā)展戰(zhàn)略[A];中國電子學(xué)會真空電子學(xué)分會第十九屆學(xué)術(shù)年會論文集(上冊)[C];2013年
相關(guān)博士學(xué)位論文 前3條
1 胡權(quán);微波管電子光學(xué)系統(tǒng)數(shù)值模擬及CAD技術(shù)研究[D];電子科技大學(xué);2011年
2 李錦彪;變壓器電磁場問題的自適應(yīng)有限元分析方法研究[D];沈陽工業(yè)大學(xué);2009年
3 王秀蓮;無鐵心永磁電機(jī)三維開域磁場計算與分析[D];沈陽工業(yè)大學(xué);2006年
相關(guān)碩士學(xué)位論文 前1條
1 馬百鴻;周期永磁聚焦系統(tǒng)二維伽遼金有限元模擬研究[D];電子科技大學(xué);2013年
本文編號:1886218
本文鏈接:http://sikaile.net/falvlunwen/zhishichanquanfa/1886218.html