工業(yè)機(jī)器人插補(bǔ)算法及標(biāo)定技術(shù)研究
本文選題:運(yùn)動(dòng)學(xué) + 標(biāo)定 ; 參考:《江西理工大學(xué)》2017年碩士論文
【摘要】:工業(yè)機(jī)器人是《中國(guó)制造2025》重點(diǎn)領(lǐng)域之一,而工業(yè)機(jī)器人控制系統(tǒng)是機(jī)器人核心技術(shù)之一。目前,工業(yè)機(jī)器人控制系統(tǒng)的研發(fā)和生產(chǎn)基本被日本和德國(guó)壟斷,隨著國(guó)產(chǎn)工業(yè)機(jī)器人的高速發(fā)展,研發(fā)具有自主知識(shí)產(chǎn)權(quán)的控制系統(tǒng)已成為關(guān)鍵。運(yùn)動(dòng)插補(bǔ)算法是機(jī)器人控制系統(tǒng)的重要基礎(chǔ)功能之一,直接反映著機(jī)器人運(yùn)動(dòng)速度和加工效率。對(duì)于運(yùn)動(dòng)路徑中速度方向變化大的點(diǎn),高速通過(guò)會(huì)導(dǎo)致機(jī)器人產(chǎn)生震動(dòng)和沖擊,嚴(yán)重影響著機(jī)器人的加工質(zhì)量,低速通過(guò)則會(huì)影響加工效率。速度規(guī)劃的核心是在機(jī)器人加減速性能約束條件下,盡可能提高進(jìn)給速度。本文提出連續(xù)微小直線段插補(bǔ)和樣條曲線插補(bǔ),綜合考慮了機(jī)器人的性能約束,實(shí)現(xiàn)了運(yùn)動(dòng)平穩(wěn)高速,提高了加工效率。論文主要工作如下:以HYHJ-602型通用六軸焊接機(jī)器人為研究對(duì)象,采用D-H參數(shù)建模法,分析處理了機(jī)器人運(yùn)動(dòng)學(xué)正向和反向問(wèn)題,成功求取了機(jī)器人逆解和速度雅克比矩陣,為后文運(yùn)動(dòng)插補(bǔ)算法打下基礎(chǔ)。以艾利特ERC-G200型控制器為研究對(duì)象,基于目前工業(yè)機(jī)器人重復(fù)定位精度過(guò)差導(dǎo)致離線編程難以實(shí)現(xiàn)的問(wèn)題,提出了一種微分運(yùn)動(dòng)模型標(biāo)定方法,成功提高了機(jī)器人的重復(fù)定位精度,為下文連續(xù)微小直線段插補(bǔ)算法的實(shí)現(xiàn)打下了基礎(chǔ)。針對(duì)離線編程CAM軟件生成的大量微小直線段轉(zhuǎn)接角過(guò)大導(dǎo)致速度過(guò)低的問(wèn)題,提出一種基于關(guān)節(jié)突跳速度的相鄰直線段高速轉(zhuǎn)接的速度前瞻插補(bǔ)算法,該法能兼顧關(guān)節(jié)空間速度約束和笛卡爾空間約束,充分利用了電機(jī)的加減速能力,保證了機(jī)器人通過(guò)直線銜接點(diǎn)時(shí)平穩(wěn)、高速。針對(duì)目前機(jī)器人以規(guī)則的關(guān)節(jié)插補(bǔ)、直線插補(bǔ)、圓弧插補(bǔ)為主要插補(bǔ)方法,無(wú)法加工復(fù)雜路徑的問(wèn)題,提出一種基于B樣條的插值曲線,并在此曲線的基礎(chǔ)上,綜合考慮了弓高誤差、法向加速度、切向速度、切向加速度、切向加加速度約束的速度自適應(yīng)前瞻插補(bǔ)算法。該插值曲線僅需幾個(gè)特征示教點(diǎn)即可表征所需加工的路徑,極大地降低了操作人員的示教難度。該插補(bǔ)算法能保證生成軌跡完全經(jīng)過(guò)所給示教點(diǎn),輪廓誤差小,以機(jī)器人加減速約束下的最大速度平穩(wěn)地經(jīng)過(guò)曲率極大值點(diǎn)處,且機(jī)器人無(wú)震蕩、無(wú)沖擊。
[Abstract]:Industrial robot is one of the key fields of "made in China 2025", and industrial robot control system is one of the core technology of robot. At present, the R & D and production of industrial robot control system is basically monopolized by Japan and Germany. With the rapid development of domestic industrial robot, the research and development of control system with independent intellectual property has become the key. Motion interpolation algorithm is one of the important basic functions of robot control system, which directly reflects the motion speed and machining efficiency of the robot. For the points in the path of motion where the direction of velocity changes greatly, the high speed passing will lead to the vibration and impact of the robot, which will seriously affect the machining quality of the robot, and the low speed will affect the processing efficiency. The core of speed planning is to improve the feed speed as much as possible under the constraint of robot acceleration and deceleration performance. In this paper, continuous small straight line segment interpolation and spline curve interpolation are proposed, which take into account the performance constraints of the robot, realize smooth motion and high speed, and improve the processing efficiency. The main work of this paper is as follows: taking the HYHJ-602 universal six-axis welding robot as the research object, using D-H parameter modeling method, the forward and reverse kinematics problems of the robot are analyzed and dealt with, and the inverse solution of the robot and the velocity Jacobian matrix are obtained successfully. It lays the foundation for the motion interpolation algorithm. Taking Allitt ERC-G200 controller as the research object, a differential motion model calibration method is proposed based on the problem that the repeated positioning accuracy of industrial robot is too poor and it is difficult to realize off-line programming. It improves the precision of the robot and lays a foundation for the realization of the interpolation algorithm of the continuous small straight line segment. In order to solve the problem that a large number of small straight line segments generated by off-line programming CAM software lead to too low speed, a forward interpolation algorithm for high speed forward interpolation of adjacent straight line segments based on joint jump speed is proposed. This method can take account of the speed constraint of joint space and Cartesian space constraint, make full use of the acceleration and deceleration ability of the motor, and ensure the stability and high speed of the robot passing through the straight line junction point. Aiming at the problem that the robot is unable to process complex paths with regular joint interpolation, straight line interpolation and arc interpolation as the main interpolation methods, a interpolation curve based on B-spline is proposed and based on the interpolation curve. An adaptive forward interpolation algorithm with bow height error, normal acceleration, tangential velocity, tangential acceleration, tangential acceleration and tangential acceleration is presented. The interpolation curve needs only a few characteristic teaching points to characterize the required processing path, which greatly reduces the difficulty of the operator in teaching. The interpolation algorithm can ensure that the trajectory can be generated completely through the teaching points given, the contour error is small, the maximum velocity of the robot under acceleration and deceleration constraints can smoothly pass through the maximum curvature point, and the robot has no concussion and no impact.
【學(xué)位授予單位】:江西理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TP242.2
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 趙建華;朱蓓;劉放;譚云東;樊留群;顧賢杰;黃偉;;五軸微段平滑插補(bǔ)算法[J];機(jī)械工程學(xué)報(bào);2016年12期
2 吳婷;張禮兵;黃風(fēng)立;;基于過(guò)控制頂點(diǎn)曲線的微線段過(guò)渡插補(bǔ)方法[J];中國(guó)機(jī)械工程;2015年10期
3 孫樹杰;林滸;鄭樎默;;反向插補(bǔ)的NURBS曲線前瞻插補(bǔ)算法[J];計(jì)算機(jī)輔助設(shè)計(jì)與圖形學(xué)學(xué)報(bào);2014年09期
4 陳錚杰;趙東標(biāo);李克強(qiáng);;一種自適應(yīng)前瞻的微線段速度平滑插補(bǔ)算法[J];機(jī)械設(shè)計(jì)與制造工程;2014年03期
5 趙世強(qiáng);于東;耿聰;韓文業(yè);;三次多項(xiàng)式位移增量微段前瞻插補(bǔ)算法研究[J];中國(guó)機(jī)械工程;2013年08期
6 田軍鋒;林滸;姚壯;李杰;;數(shù)控系統(tǒng)S型曲線加減速快速規(guī)劃研究[J];小型微型計(jì)算機(jī)系統(tǒng);2013年01期
7 沈斌;齊黨進(jìn);樊留群;朱志浩;;基于NURBS曲線擬合的微段高速自適應(yīng)加工算法[J];中國(guó)機(jī)械工程;2012年15期
8 羅福源;游有鵬;尹涓;;NURBS曲線S形加減速雙向?qū)?yōu)插補(bǔ)算法研究[J];機(jī)械工程學(xué)報(bào);2012年05期
9 張鵬程;張鐵;;基于矢量積法的六自由度工業(yè)機(jī)器人雅可比矩陣求解及奇異位形的分析[J];機(jī)械設(shè)計(jì)與制造;2011年08期
10 孫玉娥;林滸;李建偉;;面向高速加工的樣條曲線實(shí)時(shí)插補(bǔ)算法[J];機(jī)械工程學(xué)報(bào);2011年03期
相關(guān)博士學(xué)位論文 前2條
1 王海濤;數(shù)控系統(tǒng)速度前瞻控制算法及其實(shí)現(xiàn)[D];南京航空航天大學(xué);2011年
2 王東署;工業(yè)機(jī)器人標(biāo)定技術(shù)研究[D];東北大學(xué);2006年
相關(guān)碩士學(xué)位論文 前3條
1 張虎;面向標(biāo)定的工業(yè)機(jī)器人建模及參數(shù)辨識(shí)方法研究[D];哈爾濱工業(yè)大學(xué);2015年
2 丁學(xué)亮;Staubli工業(yè)機(jī)器人標(biāo)定算法和實(shí)驗(yàn)研究[D];浙江理工大學(xué);2014年
3 南小海;6R型工業(yè)機(jī)器人標(biāo)定算法與實(shí)驗(yàn)研究[D];華中科技大學(xué);2008年
,本文編號(hào):1777383
本文鏈接:http://sikaile.net/falvlunwen/zhishichanquanfa/1777383.html