基于DNA四面體的級聯(lián)式藥物遞送系統(tǒng)逆轉(zhuǎn)乳腺癌細(xì)胞耐藥研究
[Abstract]:Malignant tumor is a serious threat to human life and health. Up to now, chemotherapy is still the main means to treat malignant tumors. However, traditional chemotherapeutic drugs are easy to produce drug resistance and become one of the main problems of chemotherapy. In addition, chemotherapy drugs still have the disadvantages of poor tumor targeting and toxic side effects. Drug Delivery Systems (DDSs), an integrated drug delivery system (DDSs), which is targeted for high tumor targeting, reduces the toxicity of chemotherapeutic drugs (DDSs), is an imminent.DNA nanotechnology. As a new technology of nano material science, since it was asked, it has attracted much attention because of its design and predictability and the formation of unique morphologies. DNA tetrahedron (DNA) Tetrahedron), with the advantages of stable structure and performance, easy to diversify and so on, it is considered as an ideal drug carrier. Liposome (Liposome) has the characteristics of nanoscale, good biocompatibility and high biological safety. In recent years, as a transport carrier for chemotherapeutic drugs, liposomes have been widely used in the field of targeting drug delivery. The nucleus is the main target of most chemotherapeutic drugs, but the efflux of the tumor cells to chemotherapeutic drugs causes most chemotherapy drugs to be difficult to reach the nucleus. The nuclear pore diameter of the nucleus is about 9 nm, and the self assembled DNA tetrahedron particle size is about 5 nm, which can directly enter the nucleus through the nuclear pore. Based on this, this study is based on this study. Doxorubicin (DOX) is inlaid into DNA tetrahedron (Td) to form DOX@Td, and then, the efficient nuclear transport system of DOX@Td@Lipo based on DNA tetrahedron (DOX@Td@Lipo) is constructed by using immune liposomes to encapsulate DOX@Td efficiently. The characteristics of the drug delivery system constructed in this study are the use of the immune system. Phytophthora transtransport DOX@DNA tetrahedron into tumor cells efficiently. Two, using small size of DNA tetrahedron (smaller than nuclear pore) and biodegradability in the nucleus, the efficient transport of DOX into the nucleus can effectively avoid the drug delivery pathway of tumor cells and reverse the drug resistance of tumor cells. This system significantly improves the DOX pair The treatment efficiency of drug-resistant breast cancer and the toxic and side effects of DOX were reduced. Then, this study took human breast cancer cell MCF-7 and human breast cancer cell MCF-7/ADR as the cell model and MCF-7/ADR tumor bearing BLAB/C nude mice as animal models. The following three aspects were mainly studied: the system of 1.DOX@Td@Lipo cascade drug delivery system Preparation and characterization: single strand DNA (ssDNA) complex and base pair complementary pairs are self assembled into DNA tetrahedron, atomic force microscopy (Automatic Force Microscope, AFM) and gel imaging characterization. The results show that the size of tetrahedron is about 5 nm, and the distribution is uniform, and DOX is easily inserted into the properties of DNA double helix structure, and DOX@Td coupling is prepared. The stability was investigated by electrophoretic test. The results showed that DNA tetrahedron after coupling DOX still maintained its tetrahedral structure and had strong stability. Finally, DOX@Td@Lipo was prepared by reverse evaporation method and characterized by transmission electron microscope (Transmission Electron Microscope, TEM). The particle size was about 147 nm, and the particle size distribution was uniform.2.DOX. @Td@Lipo cascade drug delivery system in vitro antitumor activity and reversal of tumor cell resistance: a systematic investigation of the antitumor activity of DOX@Td@Lipo on MCF-7 and MCF-7/ADR cells showed that there was no significant difference in the inhibitory effect of DOX, DOX@Lipo and DOX@Td@Lipo on the proliferation of MCF-7 cells (the inhibition rate of 48 h was 70., respectively. 65%, 69.55%, 65.08%). However, the inhibitory effect of DOX and DOX@Lipo on the proliferation of ADR cells was significantly lower than that in the DOX@Td@Lipo group (48h inhibition rate was 21.23%, 25.73%, 79.83%). It showed that at the cell level, DOX@Td@Lipo successfully reversed the resistance of MCF-7/ADR cells to DOX and improved the ability of DOX to kill the tumor cells. The nuclear targeting ability of the constructed system was verified by fluorescence localization. The results showed that, compared with the DOX group, the Td-FAM group, the DOX@Td group and the DOX@Td@Lipo group observed the green fluorescence of FAM and the red fluorescence of DOX in the nucleus of MCF-7/ADR, while DOX and DOX@Lipo groups had no red fluorescence in the nucleus of the nucleus, indicating DOX. DOX@Lipo can not transport DOX into the nucleus of drug-resistant cells, but the DOX@Td@Lipo delivery system can transfer DOX into drug resistant cells and the release of DOX can enter the anti-tumor activity evaluation of the.3.DOX@Td@Lipo cascade drug delivery system of drug resistant cell nuclei: MCF-7/ADR bearing tumor Nude mice were used to evaluate the antitumor activity of the drug delivery system in vivo. The distribution behavior of the delivery system in nude mice was investigated by near infrared imaging technique. The results showed that DOX@Td@Lipo could be rich in tumor tissues after 1 h after intravenous injection, and the drug was enriched in tumor tissue with time. In addition, the results also showed that the encapsulation of immunliposome enhanced the circulation time of the drug in nude mice. The pharmacodynamic results showed that after 2 weeks of treatment, the inhibitory rate of the DOX@Td@Lipo group was 66.7%, the inhibition rate in the group DOX@Lipo was 41.67%, and the group Td@Lipo was not treated. The tumor has a significant therapeutic effect. The antitumor activity of the body is further confirmed by pathology. By comparing the normal tissues and organs, DOX@Td@Lipo significantly reduces the toxic and side effects of DOX.
【學(xué)位授予單位】:鄭州大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:R943;R96
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 趙艷麗,劉國琴;一種快速提取小麥DNA的方法[J];鄭州工程學(xué)院學(xué)報;2002年03期
2 趙廣超 ,朱俊杰 ,陳洪淵 ,王雪梅 ,陸祖宏;Spectroscopic and Spectroelectrochemical Studies of Interaction of Nile Blue with DNA[J];Chinese Journal of Chemistry;2002年01期
3 張鵬 ,孟繼本 ,龍江 ,松浦輝男 ,王永梅;Synthesis of Benzo [α]phenoxazin-5-one Derivatives and Their Interactions with DNA[J];Chinese Journal of Chemistry;2002年05期
4 陳繪麗 ,楊頻;A Novel Cobalt(III) Mixed-polypyridyl Complex: Synthesis, Characterization and DNA Binding[J];Chinese Journal of Chemistry;2002年12期
5 周莉,李樹蕾,陳輝,黃可欣,聶毓秀;DNA Damage Effect of Mixed Rare Earth Changle Crossing Placenta Barrier on Rat Embryo[J];Journal of Rare Earths;2003年02期
6 陳婧,康敬萬;Interaction between Eu(bpy)_3~(3+) Complex and DNA by Fluorophotometry[J];Journal of Rare Earths;2003年S1期
7 張強(qiáng);企業(yè)DNA:核心競爭力[J];中國石化;2004年06期
8 ;Interaction between DNA with Complex of Eu~(3+)-Rutin by UV-Visible Spectroscopy and Electrochemistry[J];Journal of Rare Earths;2005年04期
9 周春瓊,鄧先和,楊頻;Interaction of Complex of Europium and Hbbimp with DNA[J];Journal of Rare Earths;2005年05期
10 ;Synthesis of a New Cobalt (II) Complex and its Interaction with DNA[J];Chinese Chemical Letters;2005年04期
相關(guān)會議論文 前10條
1 Michael J.Siefkes;Cory O.Brant;Ronald B.Walter;;A novel real-time XL-PCR for DNA damage detection[A];漁業(yè)科技創(chuàng)新與發(fā)展方式轉(zhuǎn)變——2011年中國水產(chǎn)學(xué)會學(xué)術(shù)年會論文摘要集[C];2011年
2 ;Hormonal Regulation and Tumorigenic Role of DNA Methyltransferase[A];2011中國婦產(chǎn)科學(xué)術(shù)會議暨浙江省計劃生育與生殖醫(yī)學(xué)學(xué)術(shù)年會暨生殖健康講習(xí)班論文匯編[C];2011年
3 Dongmei Zhao;Fan Jin;Yuli Qian;Hefeng Huang;;Expression patterns of Dnmtl and Dnmt3b in preimplantational mouse embryos and effects of in-vitro cultures on their expression[A];中華醫(yī)學(xué)會第十次全國婦產(chǎn)科學(xué)術(shù)會議婦科內(nèi)分泌會場(婦科內(nèi)分泌學(xué)組、絕經(jīng)學(xué)組、計劃生育學(xué)組)論文匯編[C];2012年
4 姜東成;蔣稼歡;楊力;蔡紹皙;K.-L.Paul Sung;;在聚吡咯微點致動下的DNA雜交行為[A];2008年全國生物流變學(xué)與生物力學(xué)學(xué)術(shù)會議論文摘要集[C];2008年
5 白明慧;翁小成;周翔;;聯(lián)鄰苯二酚類小分子作為DNA交聯(lián)劑的研究[A];第六屆全國化學(xué)生物學(xué)學(xué)術(shù)會議論文摘要集[C];2009年
6 張曄;杜智;楊斌;高英堂;;檢測外周血中游離DNA的應(yīng)用前景(綜述)[A];天津市生物醫(yī)學(xué)工程學(xué)會第29屆學(xué)術(shù)年會暨首屆生物醫(yī)學(xué)工程前沿科學(xué)研討會論文集[C];2009年
7 周紅;鄭江;王良喜;丁國富;魯永玲;潘文東;羅平;肖光夏;;CpG DNA誘導(dǎo)全身炎癥反應(yīng)綜合征的作用及其機(jī)制研究[A];全國燒傷創(chuàng)面處理、感染專題研討會論文匯編[C];2004年
8 ;EFFECTS OF Ku70-DEFICIENT ON ARSENITE-INDUCED DNA DOUBLE STRAND BREAKS, CHROMOSOMAL ALTERATIONS AND CELL CYCLE ARREST[A];海峽兩岸第三屆毒理學(xué)研討會論文摘要[C];2005年
9 李經(jīng)建;冀中華;蔡生民;;小溝結(jié)合方式中的DNA媒介電荷轉(zhuǎn)移[A];第十三次全國電化學(xué)會議論文摘要集(下集)[C];2005年
10 ;The interaction between Levofloxacine Hydrochloride and DNA mediated by Cu~(2+)[A];湖北省化學(xué)化工學(xué)會2006年年會暨循環(huán)經(jīng)濟(jì)專家論壇論文集[C];2006年
相關(guān)重要報紙文章 前10條
1 本報記者 袁滿;平安:把“領(lǐng)先”作為DNA[N];經(jīng)濟(jì)觀察報;2006年
2 舒放;編織一個DNA納米桶[N];醫(yī)藥經(jīng)濟(jì)報;2006年
3 閆潔;英兩無罪公民起訴要求銷毀DNA記錄[N];新華每日電訊;2008年
4 何德功;日本制成診斷魚病的“DNA書”[N];農(nóng)民日報;2004年
5 本報記者 張巍巍;DNA樣本也能作假[N];科技日報;2009年
6 周斌偉 鄒巍;蘇州警方應(yīng)用DNA技術(shù)一年偵破案件1887起[N];人民公安報;2011年
7 本報記者 楊天笑;揭秘“神探”DNA[N];蘇州日報;2011年
8 第四軍醫(yī)大學(xué)基礎(chǔ)醫(yī)學(xué)部生物化學(xué)與分子生物學(xué)教研室教授 李福洋;破除法老DNA的咒語[N];東方早報;2011年
9 常麗君;DNA電路可檢測導(dǎo)致疾病的基因損傷[N];科技日報;2012年
10 常麗君;效率和質(zhì)量:“DNA制造業(yè)”兩大障礙被攻克[N];科技日報;2012年
相關(guān)博士學(xué)位論文 前10條
1 唐陽;基于質(zhì)譜技術(shù)的基因組DNA甲基化及其氧化衍生物分析[D];武漢大學(xué);2014年
2 池晴佳;DNA動力學(xué)與彈性性質(zhì)研究[D];重慶大學(xué);2015年
3 胡璐璐;哺乳動物DNA去甲基化過程關(guān)鍵酶TET2的三維結(jié)構(gòu)與P暬蒲芯縖D];復(fù)旦大學(xué);2014年
4 馬寅洲;基于滾環(huán)擴(kuò)增的DNA自組裝技術(shù)的研究[D];南京大學(xué);2014年
5 黃學(xué)鋒;精子DNA碎片的臨床意義:臨床和實驗研究[D];復(fù)旦大學(xué);2013年
6 隋江東;APE1促進(jìn)DNA-PKcs介導(dǎo)hnRNPA1磷酸化及其在有絲分裂期端粒保護(hù)中的作用[D];第三軍醫(yī)大學(xué);2015年
7 劉松柏;結(jié)構(gòu)特異性核酸酶FEN1在DNA復(fù)制及細(xì)胞周期過程中的功能性研究[D];浙江大學(xué);2015年
8 王璐;哺乳動物中親本DNA甲基化的重編程與繼承[D];中國科學(xué)院北京基因組研究所;2015年
9 齊文靖;染色質(zhì)改構(gòu)蛋白BRG1在DNA雙鏈斷裂修復(fù)中的作用及機(jī)制研究[D];東北師范大學(xué);2015年
10 龍湍;水稻T-DNA插入突變?nèi)后w側(cè)翼序列的分離分析和OsaTRZ2的克隆與功能鑒定[D];華中農(nóng)業(yè)大學(xué);2014年
相關(guān)碩士學(xué)位論文 前10條
1 趙犖;基于DNA四面體的級聯(lián)式藥物遞送系統(tǒng)逆轉(zhuǎn)乳腺癌細(xì)胞耐藥研究[D];鄭州大學(xué);2017年
2 董洪奎;面向可視化納米操作的DNA運動學(xué)建模及誤差實時校正方法[D];沈陽理工大學(xué);2014年
3 聞金燕;水溶性羧基和吡啶基咔咯大環(huán)與DNA和人血清蛋白的相互作用[D];華南理工大學(xué);2015年
4 江懌雨;水溶性羧酸卟啉及其配合物與DNA和人血清蛋白的相互作用[D];華南理工大學(xué);2015年
5 高志森;比較外周游離循環(huán)腫瘤DNA與癌胚抗原監(jiān)測非小細(xì)胞肺癌根治術(shù)前后腫瘤負(fù)荷變化的初步研究[D];福建醫(yī)科大學(xué);2015年
6 丁浩;血漿循環(huán)DNA完整性及多基因甲基化對肺癌診斷價值的研究[D];河北大學(xué);2015年
7 王鵬;基于碳點@氧化石墨烯復(fù)合材料DNA生物傳感器的構(gòu)建及用于PML/RARα基因檢測[D];福建醫(yī)科大學(xué);2015年
8 李海青;轉(zhuǎn)堿篷和鹽角草總DNA的耐鹽紫花苜蓿的選育[D];內(nèi)蒙古大學(xué);2015年
9 李婷婷;小鼠DNA模式識別重要受體的分子結(jié)構(gòu)特征及其功能研究[D];中國農(nóng)業(yè)科學(xué)院;2015年
10 劉瑞斯;抗癌藥物奧沙利鉑與DNA相互作用的原子力顯微鏡觀察研究[D];東北林業(yè)大學(xué);2015年
,本文編號:2165757
本文鏈接:http://sikaile.net/yixuelunwen/yiyaoxuelunwen/2165757.html