天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

PCL-b-PEG-b-PCL聚合物載藥體系的構(gòu)建及抗腫瘤研究

發(fā)布時(shí)間:2018-06-30 10:18

  本文選題:聚己內(nèi)酯-b-聚乙二醇-b-聚己內(nèi)酯 + 聚合物膠束; 參考:《北京協(xié)和醫(yī)學(xué)院》2015年博士論文


【摘要】:惡性腫瘤已成為導(dǎo)致人類死亡的第二大原因,僅次于心血管疾病導(dǎo)致的死亡率;瘜W(xué)治療是治療轉(zhuǎn)移性惡性腫瘤的重要手段之一。但傳統(tǒng)化療對腫瘤組織和細(xì)胞缺乏選擇性殺滅作用,常規(guī)治療劑量即可對正常組織器官產(chǎn)生顯著毒副作用,導(dǎo)致患者不能耐受,降低藥物療效。為了提高抗腫瘤藥物的靶向性和生物利用率,降低毒副作用,改善治療效果,納米藥物載體已成為腫瘤化療研究的熱點(diǎn)領(lǐng)域,其中代表性的給藥系統(tǒng)有脂質(zhì)體、納米粒、納米乳、聚合物膠束、聚合物囊泡等。兩親性聚合物能夠在不同條件下自組裝成聚合物膠束、聚合物囊泡等不同結(jié)構(gòu)的藥物載體。本文以具有良好生物相容性和可生物降解性的兩親性三嵌段共聚物—聚己內(nèi)酯-b-聚乙二醇-b-聚己內(nèi)酯(PCL-b-PEG-b-PCL)為載體材料,通過分子自組裝用不同親水/疏水鏈段的PCL-b-PEG-b-PCL分別研制出聚合物膠束和聚合物囊泡這兩種藥物載體,同時(shí),進(jìn)一步研制出基于PCL-b-PEG-b-PCL的磷脂-聚合物雜化納米粒作為第三種藥物載體。以目前臨床使用最廣泛的抗腫瘤藥物紫杉醇和阿霉素為模型藥物,研制載紫杉醇聚合物膠束、葉酸靶向載紫杉醇磷脂-聚合物雜化納米粒、雙重載藥(親水內(nèi)腔載阿霉素、疏水雙分子膜層載紫杉醇)聚合物納米囊泡,研究其作為抗腫瘤藥物載體的有效性。本文的主要研究內(nèi)容如下:一、兩親性三嵌段共聚物PCL-b-PEG-b-PCL形成不同載體的研究兩親性聚合物可以自組裝形成球狀膠束、柱狀膠束、蠕蟲狀膠束、聚合物囊泡等不同結(jié)構(gòu),親水鏈段的質(zhì)量比或體積比、共聚物分子量及制備方法是決定自組裝形成不同載體結(jié)構(gòu)的關(guān)鍵參數(shù)。對兩親性三嵌段共聚物PCL-b-PEG-b-PCL,目前尚無研究文獻(xiàn)報(bào)道其形成聚合物膠束和聚合物囊泡所需親水疏水嵌段比及分子量。本文合成了一系列質(zhì)量可控、結(jié)構(gòu)準(zhǔn)確的不同分子量、不同比例親水疏水鏈段的聚合物,已經(jīng)初步確定了PCL-b-PEG-b-PCL聚合物自組裝形成囊泡的親水部分與疏水部分的比例及形成囊泡的規(guī)律。研究表明采用薄膜水化超聲分散法時(shí),兩親性三嵌段共聚物PCL-b-PEG-b-PCL (PCEP484)中PEG質(zhì)量百分?jǐn)?shù)約為50%時(shí),能形成具有核-殼結(jié)構(gòu)的聚合物納米膠束;兩親性三嵌段共聚物PCL-b-PEG-b-PCL (PCEP888)中PEG質(zhì)量百分?jǐn)?shù)約為33%時(shí),能形成具有明顯雙分子膜層結(jié)構(gòu)的聚合物囊泡。二、載紫杉醇聚合物膠束的研制及其抗腫瘤研究開發(fā)一種能有效在疏水性內(nèi)核包載抗腫瘤藥物紫杉醇(paclitaxel, PTX)的聚合物膠束藥物載體,并能用于靜脈全身給藥,避免臨床紫杉醇注射劑使用聚氧乙烯蓖麻油作為增溶劑所引發(fā)的過敏反應(yīng)及毒副作用。本文以PCL-b-PEG-b-PCL (PCEP484)為載體材料,采用薄膜水化超聲分散法制備出可用于靜脈注射的載紫杉醇聚合物膠束(paclitaxel-loaded polymeric micelles, PTX-PM)。掃描電鏡及透射電鏡顯示所研制的PTX-PM呈球形,大小均勻,具有明顯的核殼結(jié)構(gòu)。紫杉醇依靠疏水作用有效載入疏水性鏈段PCL形成的疏水性內(nèi)核中,其載藥量為28.98%,藥物包封率為94.36%,具有較高的載藥量與包封率。親水性PEG鏈段包裹在疏水性內(nèi)核外圍形成具有明顯冠狀結(jié)構(gòu)膠束表面,能使聚合物膠束能很好地分散于水相并具有長循環(huán)特性。載藥聚合物膠束的平均粒徑為93nm,多分散系數(shù)為0.19,非常有利于靜脈全身給藥。差示掃描量熱分析研究表明將紫杉醇制成緩釋納米粒后其結(jié)晶狀態(tài)發(fā)生了變化,以無定型狀態(tài)存在于聚合物膠束中。在1M水楊酸鈉中的體外釋放研究表明PTX-PM具有緩釋紫杉醇效果,無藥物突釋,前5天為零級(jí)釋放動(dòng)力學(xué)模型(R=0.99)。MTT法細(xì)胞毒性研究表明空白聚合物膠束對HepG2肝癌細(xì)胞及EMT-6乳腺癌細(xì)胞均無毒性,在相同紫杉醇含量下,PTX-PM的細(xì)胞毒性低于市售紫杉醇/聚氧乙烯蓖麻油注射劑(Taxol(?)),并具有時(shí)間和劑量依賴性,說明紫杉醇包封于聚合物膠束中后其活性并沒有降低,而且可以隨著紫杉醇從聚合物膠束中逐漸釋放出來而在更長的時(shí)間內(nèi)作用于癌細(xì)胞。大鼠藥代動(dòng)力學(xué)研究表明,與Taxol(?)相比,所研制的載藥聚合物膠束明顯延長了紫杉醇在血液中的循環(huán)時(shí)間及消除半衰期,顯著提高了生物利用度。體內(nèi)抗腫瘤活性研究表明,PTX-PM對小鼠EMT-6乳腺癌具有明顯抑制作用,相同給藥劑量下其抑瘤效果優(yōu)于Taxol(?)(腫瘤抑制率:85.79% vs 63.37%,p0.05)。上述研究表明所研制的PTX-PM高效低毒,能明顯延長紫杉醇在血液中的循環(huán)時(shí)間,具有EPR被動(dòng)靶向作用,是一種有潛力的可用于腫瘤治療的紫杉醇緩控釋載藥體系。三、 葉酸靶向載紫杉醇磷脂-聚合物雜化納米粒的研制及其抗腫瘤研究磷脂-聚合物雜化納米粒(lipid-polymer hybrid nanoparticles, LPNPs)是一類基于脂質(zhì)體和聚合物納米粒發(fā)展的新型藥物載體,本文開發(fā)了一種新型具有葉酸靶向的載紫杉醇磷脂-聚合物雜化納米粒(PTX-FLPNPs)。以兩親性共聚物PCL-b-PEG-b-PCL (PCEP484)、甲氧基聚乙二醇二硬脂酰磷脂酰乙醇胺(mPEG2000-DSPE)及偶聯(lián)葉酸的聚乙二醇二硬脂酰磷脂酰乙醇胺(DSPE-PEG(2000)Folate)為載體材料,通過薄膜水化超聲分散法制備出以葉酸為靶向的載紫杉醇磷脂-聚合物雜化納米粒(PTX-FLPNPs)。透射電鏡顯示PTX-FLPNPs呈球形,大小均勻,具有“核-殼-殼”的結(jié)構(gòu),疏水性鏈段PCL及藥物PTX通過自組裝形成內(nèi)核結(jié)構(gòu),磷脂的DSPE形成內(nèi)層殼結(jié)構(gòu),兩親性共聚物及磷脂中的親水性鏈段PEG形成外層殼結(jié)構(gòu)。激光共聚焦顯微鏡進(jìn)一步確證了所制備的羅丹明標(biāo)記磷脂PTX-FLPNPs具有“核-殼-殼”的結(jié)構(gòu)及明顯的磷脂單分子層結(jié)構(gòu)。粒徑分析表明,PTX-LPNPs(無葉酸靶向分子)與PTX-FLPNPs(葉酸靶向)都具有較小的分散系數(shù),表明采用該方法能制備出均一粒徑的磷脂-聚合物雜化納米粒。與PTX-LPNPs粒徑及zeta電位相比,PTX-FLPNPs的平均粒徑略有所增大(279.9 nm vs 271.5 nm),具有更高的負(fù)zeta電位值(-17.5 mV vs-14.2 mV),間接表明了FLPNPs外殼具有葉酸靶向分子。紫杉醇投藥量為30%時(shí),PTX-FLPNPs和PTX-LPNPs的載藥量大于27%,藥物包封率大于90%,都具有較高的載藥量與藥物包封率。體外釋放研究表明,紫杉醇從PTX-FLPNPs和PTX-LPNPs中的釋放均具有緩釋效果,無明顯的藥物突釋。細(xì)胞吞噬的定性及定量研究結(jié)果表明,通過葉酸受體介導(dǎo)作用,靶向修飾的磷脂-聚合物雜化納米粒能有效進(jìn)入葉酸受體高表達(dá)的腫瘤細(xì)胞內(nèi)。CCK8法細(xì)胞毒性研究表明空白FLPNPs對H1299肺癌細(xì)胞及EMT-6乳腺癌細(xì)胞均無細(xì)胞毒性,在相同紫杉醇劑量下,PTX-FLPNPs與PTX-LPNPs的細(xì)胞毒性均低于Taxol(?),而PTX-FLPNPs對細(xì)胞的殺傷力顯著高于PTX-LPNPs (p0.05),進(jìn)一步說明通過葉酸的主動(dòng)靶向性,可提高藥物在腫瘤細(xì)胞中的濃度,有效殺傷腫瘤細(xì)胞。體內(nèi)抗腫瘤活性研究表明,采取瘤內(nèi)注射的方式,PTX-FLPNPs對小鼠EMT-6乳腺癌具有與紫杉醇注射劑類似的抑瘤效果(p0.05),但PTX-FLPNPs毒性低于紫杉醇注射劑。PTX-FLPNPs的抑瘤效果優(yōu)于PTX-LPNPs (65.78% vs 48.38%, p0.05),表明通過葉酸受體介導(dǎo)的靶向作用增加了腫瘤細(xì)胞對納米粒的攝取進(jìn)而增強(qiáng)了抑瘤作用。四、雙重載藥聚合物納米囊泡的研制及其腫瘤靶向初步研究聚合物囊泡具有親水性內(nèi)腔及較厚的疏水性雙層膜,其獨(dú)特的結(jié)構(gòu)可以使其同時(shí)包載親水性及疏水性藥物,用于腫瘤的協(xié)同治療。本文以PCL-b-PEG-b-PCL (PCEP888)為載體材料,采用薄膜水化超聲分散法制備出具有明顯雙分子膜層類似脂質(zhì)體結(jié)構(gòu)的聚合物囊泡。疏水性藥物紫杉醇(paclitaxel, PTX)依靠疏水性作用被包載進(jìn)入聚合物囊泡的疏水性膜層中,采用硫酸銨梯度法將親水性鹽酸阿霉素(doxorubicin, DOX)包載進(jìn)入聚合物囊泡的親水性內(nèi)腔中。透射電鏡表明雙重載藥聚合物囊泡(polymersomes loaded with both PTX and DOX, PS-PTX-DOX)不但具有明顯的雙層膜層結(jié)構(gòu),親水性內(nèi)腔由于DOX的載入還顯示出明顯的內(nèi)核。激光共聚焦顯微鏡進(jìn)一步確證帶有自發(fā)熒光的DOX載入親水性內(nèi)腔中。當(dāng)紫杉醇和阿霉素的投藥量為10%時(shí),所研制的雙PS-PTX-DOX的平均粒徑為169.7nm,多分散系數(shù)為0.211,粒度較為均一,非常有利于作為全身給藥藥物載體用于腫瘤的聯(lián)合化療。細(xì)胞吞噬研究表明,在同樣的培養(yǎng)時(shí)間和阿霉素劑量下,PS-PTX-DOX在細(xì)胞核內(nèi)的熒光強(qiáng)度遠(yuǎn)小于阿霉素,表明聚合物囊泡載體具有明顯的緩釋作用。隨著培養(yǎng)時(shí)間的延長,所釋放的DOX進(jìn)入細(xì)胞核,細(xì)胞核內(nèi)DOX熒光強(qiáng)度增強(qiáng)。PS-PTX-DOX的粒徑小于200 nm,可用于靜脈全身給藥。荷瘤小鼠藥物體內(nèi)分布研究表明,尾靜脈注射PS-PTX-DOX后,由于其具有長循環(huán)特性,可以延長血液循環(huán)時(shí)間,并通過EPR效應(yīng)有效將藥物富集于腫瘤部位。
[Abstract]:Malignant tumor has become the second major cause of human death, second only to the mortality caused by cardiovascular disease. Chemical therapy is one of the most important methods for the treatment of metastatic malignant tumors. However, traditional chemotherapy does not kill the tumor tissues and cells selectively. The conventional treatment dose can produce significant toxic and side effects on normal tissues and organs. In order to increase the patient's intolerance and reduce the efficacy of the drug, in order to improve the targeting and bioavailability of antitumor drugs, reduce the side effects and improve the therapeutic effect, nanoscale drug carriers have become a hot field in the research of tumor chemotherapy. The representative drug delivery systems include liposomes, nanoparticles, nanoscale, polymer micelles, and polymer vesicles. Two amphiphilic polymers can be self assembled into polymer micelles, polymer vesicles and other drug carriers under different conditions. In this paper, the two Pro three block copolymers with good biocompatibility and biodegradability, polyhexyl -b- poly (ethylene glycol -b-) polyhexyl (PCL-b-PEG-b-PCL), are used as carrier materials. Polymer micelles and polymer vesicles were developed by PCL-b-PEG-b-PCL with different hydrophilic / hydrophobic segments in the self-assembly. At the same time, the PCL-b-PEG-b-PCL based phospholipid polymer hybrid nanoparticles were developed as the third drug carriers. The most widely used antitumor drug paclitaxel and armilla were made in the present clinic. As a model drug, the preparation of paclitaxel polymer micelles, folic acid targeted paclitaxel phospholipid polymer hybrid nanoparticles, dual drug loading (hydrophilic adriamycin, hydrophobic biolecular paclitaxel) polymer nano vesicles, study its effectiveness as an antitumor drug carrier. The main contents of this paper are as follows: one, two parents Study on the formation of different carriers of the three block copolymer PCL-b-PEG-b-PCL two amphiphilic polymers can form spherical micelles, columnar micelles, vermicular micelles, polymer vesicles and other different structures, mass ratio or volume ratio of hydrophilic chain segments, molecular weight and preparation methods of copolymers are key parameters determining the formation of different carrier structures by self assembly. For two Pro sex three block copolymer PCL-b-PEG-b-PCL, there is no research literature on the hydrophilic block ratio and molecular weight required for forming polymer micelles and polymer vesicles. A series of polymers with different molecular weights and different proportions of hydrophilic hydrophobic chain segments have been synthesized, and PCL-b has been preliminarily identified. The proportion of the hydrophilic part and the hydrophobic part of the -PEG-b-PCL polymer and the formation of the vesicles are formed by the self-assembly of the polymer. The study shows that when the PEG mass percentage of the two Pro three block copolymer (PCEP484) is about 50%, the polymer nano micelle with nuclear shell structure can be formed by the film hydration ultrasonic dispersion method; two When the PEG mass percentage of the amphiphilic three block copolymer PCL-b-PEG-b-PCL (PCEP888) is about 33%, it can form a polymer vesicle with an obvious double molecular membrane structure. Two, the development of the paclitaxel polymer micelles and the development of the antitumor research and development of a polymer that can effectively encapsulate the aggregation of paclitaxel (PTX) in the hydrophobic core. The compound micellar drug carrier, which can be used in the whole body of intravenous administration, avoids the allergic reaction and side effects caused by the use of polyoxyethylene castor oil as a solubilizing agent in the clinical taxol injection. In this paper, PCL-b-PEG-b-PCL (PCEP484) was used as the carrier material to prepare paclitaxel poly (paclitaxel) for intravenous injection. Paclitaxel-loaded polymeric micelles (PTX-PM). The scanning electron microscope (SEM) and transmission electron microscopy (SEM) show that the developed PTX-PM has a spherical, uniform size and a clear nuclear shell structure. The paclitaxel can be effectively loaded into hydrophobic core formed by hydrophobic chain segment PCL by hydrophobicity. The drug loading amount is 28.98% and the drug encapsulation rate is 94.36%. High drug loading and encapsulation efficiency. The hydrophilic PEG segment encapsulated on the periphery of the hydrophobic core formed a distinct coronal micellar surface, which could make the polymer micelles dispersed well in the aqueous phase and have a long cycle characteristic. The average particle size of the polymer micelles of the drug carrier was 93nm and the number of polydispersity was 0.19, which was very beneficial to the intravenous administration. The study of scanning calorimetry showed that the crystalline state of the paclitaxel nanoparticles was changed and in the amorphous state in the polymer micelles. The release in vitro of 1M sodium salicylate showed that PTX-PM had the effect of sustained release taxol, no drug release, and the zero order release kinetics model (R=0.99).MTT method for the first 5 days Cytotoxicity studies showed that the blank polymer micelle had no toxicity to HepG2 hepatoma cells and EMT-6 breast cancer cells. Under the same paclitaxel content, the cytotoxicity of PTX-PM was lower than that of the commercial paclitaxel / polyoxyethylene castor oil injection (Taxol (?)), and the time and dose depended on the activity of paclitaxel in polymer micelles. It did not decrease, and could be released with paclitaxel from the polymer micelles to function in the cancer cells for a longer period of time. The pharmacokinetic study of the rodenticide showed that the drug loaded polymer micelles developed in comparison with Taxol (?) significantly prolonged the cycle time and half-life of taxol in the blood and significantly increased the birth rate. The antitumor activity in vivo showed that PTX-PM had obvious inhibitory effect on EMT-6 breast cancer in mice. The tumor inhibition effect of the same dose was better than that of Taxol (tumor inhibition rate: 85.79% vs 63.37%, P0.05). The above studies showed that the developed PTX-PM was highly effective and low toxicity, and could significantly prolong the circulation time of taxol in the blood. EPR passive targeting is a potential drug delivery system for paclitaxel with potential for cancer treatment. Three, folic acid targeting paclitaxel phospholipid polymer hybrid nanoparticles and its anti-tumor research, phospholipid polymer hybrid nanoparticles (lipid-polymer hybrid nanoparticles, LPNPs) is a class based on liposomes and polymerization A novel drug carrier for the development of nanoparticles was developed. A new type of paclitaxel phospholipid polymer hybrid nanoparticle (PTX-FLPNPs) with folic acid targeting was developed. Two amphiphilic copolymer PCL-b-PEG-b-PCL (PCEP484), methoxy polyethylene glycol two stearyl phosphatidyl ethanolamine (mPEG2000-DSPE) and polyethylene glycol two stearyl coupling with folic acid were developed. Phosphatidyl ethanolamine (DSPE-PEG (2000) Folate) was used as carrier material to prepare paclitaxel phospholipid polymer hybrid nanoparticles (PTX-FLPNPs) targeted by folic acid through a thin film hydration ultrasonic dispersion method. Transmission electron microscopy showed that PTX-FLPNPs was spherical, uniform in size, with a nuclear shell shell structure, hydrophobic chain segment PCL and drug PTX passed by self. The inner shell structure of phospholipid DSPE forms the inner shell structure, the two amphiphilic copolymer and the hydrophilic segment PEG in phospholipid form outer shell structure. The laser confocal microscope confirms that the prepared Luo Danming labeled phospholipid PTX-FLPNPs has the structure of "nuclear shell shell" and the obvious phospholipid monolayer structure. The results showed that PTX-LPNPs (no folate targeting molecules) and PTX-FLPNPs (folic acid targeting) had a small dispersion coefficient, indicating that the method could produce a homogeneous particle size phosphatide polymer hybrid nanoparticles. Compared with the PTX-LPNPs particle size and the zeta potential, the average particle size of PTX-FLPNPs increased slightly (279.9 nm vs 271.5 NM), and had a higher negative ZET. The a potential value (-17.5 mV vs-14.2 mV) indirectly indicates that the FLPNPs shell has a folic acid targeting molecule. When the dosage of paclitaxel is 30%, the drug loading of PTX-FLPNPs and PTX-LPNPs is greater than 27%, the drug encapsulation efficiency is greater than 90%, and the drug loading and drug encapsulation efficiency are higher. The release of taxol in vitro shows that paclitaxel is released from PTX-FLPNPs and PTX-LPNPs. Both qualitative and quantitative studies of cell phagocytosis show that the targeting modified phospholipid polymer hybrid nanoparticles can effectively enter the.CCK8 cytotoxicity study in the tumor cells with high expression of folate receptor. The results show that the blank FLPNPs on H1299 lung cancer cells and EMT-6 The cytotoxicity of breast cancer cells was no cytotoxicity. The cytotoxicity of PTX-FLPNPs and PTX-LPNPs was lower than that of Taxol (?) at the same paclitaxel dose, while PTX-FLPNPs was significantly more lethal than PTX-LPNPs (P0.05). It further indicated that the active targeting of folic acid could be used to raise the concentration of high drug in the tumor cells and effectively kill the tumor cells. The study of internal antitumor activity showed that PTX-FLPNPs was similar to Paclitaxel injection in mouse EMT-6 breast cancer by intratumoral injection (P0.05), but the inhibitory effect of PTX-FLPNPs toxicity lower than that of Paclitaxel injection.PTX-FLPNPs was superior to PTX-LPNPs (65.78% vs 48.38%, P0.05), indicating the targeting of folate receptor mediated targeting The action of the tumor cells increased the uptake of the nanoparticles and enhanced the tumor suppressor. Four, the development of the double loaded polymer nanoscale and its tumor targeting preliminary study of the polymer vesicles with a hydrophilic inner cavity and a thicker hydrophobic double layer membrane, and its unique structure can be used to encapsulate hydrophilic and hydrophobic drugs at the same time and be used for swelling. In this paper, PCL-b-PEG-b-PCL (PCEP888) is used as the carrier material to prepare a polymer vesicle with an obvious double molecule membrane like liposome structure by the membrane hydration ultrasonic dispersion method. The hydrophobic drug taxol (paclitaxel, PTX) is loaded into the hydrophobic membrane of the polymer vesicles by hydrophobicity, and the hydrophobic drug is applied to the hydrophobic membrane of the polymer vesicles. The hydrophilic hydrochloric acid (doxorubicin, DOX) was loaded into the hydrophilic cavity of the polymer vesicles by the ammonium sulfate gradient method. The transmission electron microscopy showed that the double carrier polymer vesicles (polymersomes loaded with both PTX and DOX, PS-PTX-DOX) not only have an obvious double layer membrane structure, but also the hydrophilic inner cavity is also shown by the DOX loading. The confocal laser confocal microscope confirmed that the DOX carrying hydrophilic inner cavity with spontaneous fluorescence was further confirmed. When the dosage of paclitaxel and adriamycin was 10%, the average particle size of the double PS-PTX-DOX was 169.7nm, the polydispersity coefficient was 0.211, and the granularity was relatively uniform, which was not often beneficial to the swelling of the drug carrier for the whole body. The cell phagocytosis study showed that the fluorescence intensity of PS-PTX-DOX in the nucleus was much less than that of adriamycin at the same incubation time and doxorubicin dose, indicating that the polymer vesicle carrier has a significant release effect. The release of DOX into the nucleus with the prolongation of the incubation time, the DOX fluorescence intensity in the nucleus enhanced.PS. The particle size of -PTX-DOX is less than 200 nm and can be used for intravenous administration. The distribution of drug in the tumor bearing mice shows that after the injection of PS-PTX-DOX in the tail vein, the blood circulation time can be extended because of its long circulation characteristics, and the drug can be enriched in the tumor site effectively through the EPR effect.
【學(xué)位授予單位】:北京協(xié)和醫(yī)學(xué)院
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2015
【分類號(hào)】:R943;R96

【相似文獻(xiàn)】

相關(guān)期刊論文 前10條

1 穆傳和;聚合物薄膜展平裝置[J];塑料科技;1991年03期

2 申南竹;;給微電子技術(shù)帶來新前景的聚合物[J];化學(xué)世界;1991年04期

3 徐僖;聚合物的溶滲性、混容性和耐環(huán)境浸蝕性[J];工程塑料應(yīng)用;1980年01期

4 胡廷永;聚合物摩擦學(xué)的研究動(dòng)向—記國際聚合物磨損及其控制討論會(huì)[J];固體潤滑;1985年03期

5 潘慧銘;難粘聚合物的粘結(jié)[J];塑料工業(yè);1979年03期

6 戚克學(xué);新型感光材料——感光聚合物的應(yīng)用[J];塑料科技;1990年04期

7 李福秀;;新型電子材料——聚合物[J];今日科技;1989年08期

8 唐舜英;儲(chǔ)連江;潘仁云;周其云;袁惠根;;有機(jī)低分子物在聚合物中的滲透[J];合成樹脂及塑料;1989年01期

9 馬文杰,黃子錚;聚合物材料在保存食品方面的應(yīng)用[J];合成材料老化與應(yīng)用;1995年02期

10 林偉峰;周建華;游佰強(qiáng);王晨;;納米顆粒對極化聚合物的非線性馳豫特性的影響研究[J];科技資訊;2008年12期

相關(guān)會(huì)議論文 前10條

1 湯啟云;胡文兵;;聚合物超薄膜結(jié)構(gòu)松弛的分子模擬研究[A];中國化學(xué)會(huì)第十四屆膠體與界面化學(xué)會(huì)議論文摘要集-第5分會(huì):膠體與界面化學(xué)中的理論問題[C];2013年

2 董小寧;張俊彥;卞鳳玲;程錦春;;耐溶劑聚合物薄膜的制備及其表征[A];甘肅省化學(xué)會(huì)第二十五屆年會(huì)、第七屆甘肅省中學(xué)化學(xué)教學(xué)經(jīng)驗(yàn)交流會(huì)論文集[C];2007年

3 賀耀龍;胡宏玖;張俊乾;李達(dá)開;朱文書;周沙敘;趙峰;;聚合物薄膜物理老化中的尺度效應(yīng)[A];中國力學(xué)學(xué)會(huì)學(xué)術(shù)大會(huì)'2009論文摘要集[C];2009年

4 曾雪鋒;岳瑞峰;吳建剛;胡歡;董良;劉理天;;一種新型厭水性碳氟聚合物薄膜的制備[A];第二屆全國信息獲取與處理學(xué)術(shù)會(huì)議論文集[C];2004年

5 溫建忠;謝耩;汪國平;王建波;;聚合物薄膜表面大面積金屬納米顆粒的均勻沉積及其應(yīng)用[A];大珩先生九十華誕文集暨中國光學(xué)學(xué)會(huì)2004年學(xué)術(shù)大會(huì)論文集[C];2004年

6 盧迎習(xí);孫俊奇;呂男;沈家驄;;層狀組裝聚合物薄膜的室溫納米壓印[A];2005年全國高分子學(xué)術(shù)論文報(bào)告會(huì)論文摘要集[C];2005年

7 高學(xué)喜;王文軍;劉云龍;;偶氮聚合物薄膜的吸收譜和二次諧波產(chǎn)生的溫度特性[A];中國光學(xué)學(xué)會(huì)2006年學(xué)術(shù)大會(huì)論文摘要集[C];2006年

8 盧甜;蔡雪刁;;含噻吩的共聚物有序薄膜的制備及電性能測試[A];2013年全國高分子學(xué)術(shù)論文報(bào)告會(huì)論文摘要集——主題G:光電功能高分子[C];2013年

9 郝聚民;邱玲;沈玉全;楊艷芳;沈啟舜;曹莊琪;韓梅娟;朱傳鳳;萬立駿;;光學(xué)質(zhì)量電光聚合物薄膜的制備及其電光調(diào)制性能[A];第五屆中國功能材料及其應(yīng)用學(xué)術(shù)會(huì)議論文集Ⅰ[C];2004年

10 方菲;張明志;張?zhí)斓?單繁立;;數(shù)字散斑相關(guān)方法在聚偏氟乙烯壓電聚合物薄膜力學(xué)性能測試中的應(yīng)用[A];中國力學(xué)學(xué)會(huì)學(xué)術(shù)大會(huì)'2005論文摘要集(上)[C];2005年

相關(guān)重要報(bào)紙文章 前4條

1 梓樺;聚合物薄膜修復(fù)破裂血管[N];醫(yī)藥經(jīng)濟(jì)報(bào);2003年

2 本報(bào)編輯部編譯;光通信開創(chuàng)真正的寬帶時(shí)代[N];中國經(jīng)濟(jì)導(dǎo)報(bào);2005年

3 高飛;聚合物電極材料成功應(yīng)用于電容器[N];科技日報(bào);2007年

4 記者 馮衛(wèi)東;新型凝膠可隨環(huán)境變色[N];科技日報(bào);2007年

相關(guān)博士學(xué)位論文 前10條

1 李鐵風(fēng);介電高彈聚合物力電行為研究與器件設(shè)計(jì)[D];浙江大學(xué);2012年

2 劉惠;復(fù)雜聚合物薄膜體系的去潤濕動(dòng)力學(xué)研究[D];吉林大學(xué);2014年

3 張慶輝;聚合物能帶的調(diào)控及其在光伏器件中的應(yīng)用[D];浙江大學(xué);2006年

4 費(fèi)旭;聚合物光波導(dǎo)材料的合成、表征及應(yīng)用[D];吉林大學(xué);2008年

5 李琳;含磷酰膽堿功能基團(tuán)聚合物的制備與生物相容性研究[D];華東理工大學(xué);2011年

6 賈彬彬;聚合物—聚合物配副的摩擦學(xué)性能研究[D];復(fù)旦大學(xué);2006年

7 王寶燕;水溶性熒光聚合物的設(shè)計(jì)、合成與熒光性質(zhì)研究[D];蘭州大學(xué);2009年

8 徐曉峰;帶親水基團(tuán)的有機(jī)共軛材料的合成及其對聚合物發(fā)光二極管和光伏電池的界面調(diào)控[D];華南理工大學(xué);2011年

9 陳開盛;光漂白對聚合物二次諧波和熱光效應(yīng)的影響研究[D];上海交通大學(xué);2009年

10 王昭一;刺激—響應(yīng)性聚合物復(fù)合薄膜的制備和性質(zhì)研究[D];吉林大學(xué);2015年

相關(guān)碩士學(xué)位論文 前10條

1 曹佳民;含二噻吩稠環(huán)單元窄帶隙聚合物的設(shè)計(jì)合成及光伏性能研究[D];湘潭大學(xué);2012年

2 錢維仙;雙層聚合物薄膜的有序褶皺行為[D];吉林大學(xué);2007年

3 高怡;極化聚合物復(fù)合薄膜的光學(xué)與電光性能的研究[D];山東大學(xué);2007年

4 李艷紅;以PMMA為基體的光折變聚合物的合成及成份分析[D];北京工業(yè)大學(xué);2007年

5 陳程;彈性聚合物薄膜的力電大變形及失效模式分析[D];蘭州理工大學(xué);2010年

6 潘宵;聚合物光電器件中金屬/聚合物界面結(jié)構(gòu)與性質(zhì)的研究[D];中國科學(xué)技術(shù)大學(xué);2015年

7 高瑞;聚合物薄膜的受激輻射特性研究[D];北京交通大學(xué);2008年

8 張敏;丙二酸二芘酯類聚合物L(fēng)B膜的制備及其光刻性質(zhì)[D];鄭州大學(xué);2011年

9 李梅;極化聚合物的電光特性研究及其應(yīng)用[D];吉林大學(xué);2008年

10 蘇萬里;極化聚合物功能薄膜的制備研究[D];長春理工大學(xué);2014年

,

本文編號(hào):2085947

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/yixuelunwen/yiyaoxuelunwen/2085947.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶ad670***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請E-mail郵箱bigeng88@qq.com
日本av在线不卡一区| 亚洲欧洲日韩综合二区| 人人妻人人澡人人夜夜| 精品少妇一区二区视频| 国产精品丝袜一二三区| 日韩一区二区三区在线日| 免费大片黄在线观看日本| 国产一级不卡视频在线观看| 免费特黄一级一区二区三区| 在线视频免费看你懂的| 九九热这里有精品20| 免费特黄欧美亚洲黄片| 日韩精品毛片视频免费看| 日韩毛片视频免费观看| 欧美日韩亚洲综合国产人| 草草夜色精品国产噜噜竹菊| 亚洲欧美国产中文色妇| 国产麻豆一线二线三线| 精品日韩欧美一区久久| 久久国产人妻一区二区免费| 色婷婷国产精品视频一区二区保健| 亚洲精品深夜福利视频| 五月婷婷六月丁香亚洲| 爱在午夜降临前在线观看| 日韩欧美高清国内精品| 九九热最新视频免费观看| 在线免费国产一区二区三区| 国产一区二区在线免费| 色一情一乱一区二区三区码| 国产丝袜极品黑色高跟鞋| 国产精品白丝一区二区| 高清一区二区三区大伊香蕉| 久久精品亚洲精品一区| 九九热精彩视频在线免费| 亚洲av专区在线观看| 国产情侣激情在线对白| 日韩一区二区三区在线欧洲| 国产亚洲精品岁国产微拍精品| 亚洲免费视频中文字幕在线观看| 国产午夜在线精品视频| 欧美日韩国产二三四区|