不同載荷條件下半月板動(dòng)態(tài)仿真生物力學(xué)分析
發(fā)布時(shí)間:2018-03-04 19:50
本文選題:半月板 切入點(diǎn):脛骨 出處:《中國(guó)組織工程研究》2017年11期 論文類型:期刊論文
【摘要】:背景:目前臨床上半月板的損傷較為常見,其可導(dǎo)致嚴(yán)重的膝關(guān)節(jié)損傷。目前,關(guān)于半月板生物力學(xué)的研究已有報(bào)道,但不同載荷條件下半月板動(dòng)態(tài)仿真模擬生物力學(xué)特性的研究還未見報(bào)道。目的:應(yīng)用有限元法仿真模擬并分析不同載荷條件下膝關(guān)節(jié)半月板的生物力學(xué)特性。方法:基于正常成人志愿者膝關(guān)節(jié)MRI數(shù)據(jù)建立全膝關(guān)節(jié)三維有限元模型,通過分別對(duì)模型股骨施加300,400及500 N垂直載荷,動(dòng)態(tài)仿真模擬分析步態(tài)下膝關(guān)節(jié)不同屈曲角度時(shí)半月板的應(yīng)力、位移分布及變化情況。結(jié)果與結(jié)論:(1)在分別載荷300,400及500 N條件下,膝關(guān)節(jié)正常動(dòng)態(tài)屈曲過程中0°,30°,60°,90°時(shí)最大應(yīng)力點(diǎn)均從內(nèi)側(cè)半月板后角脛骨附著面前緣移動(dòng)到外側(cè)半月板前角脛骨附著面后緣;最大位移點(diǎn)均從接近內(nèi)側(cè)半月板內(nèi)緣中點(diǎn)的地方移動(dòng)到外側(cè)半月板前外上緣;且外側(cè)半月板應(yīng)力及位移范圍大于內(nèi)側(cè)半月板,同時(shí)應(yīng)力及位移分布范圍與載荷的大小及屈曲角度大小成正比;(2)結(jié)果表明,膝關(guān)節(jié)半月板三維有限元模型可以有效的動(dòng)態(tài)仿真模擬半月板在不同載荷條件下的受力及位移分布情況,可為臨床中半月板損傷機(jī)制的推測(cè)提供依據(jù)。
[Abstract]:Background: meniscus injuries are common in clinical practice and can lead to severe knee injuries. At present, the biomechanics of meniscus has been reported. But the biomechanical characteristics of meniscus dynamic simulation under different loads have not been reported. Objective: to simulate and analyze the biomechanical characteristics of knee meniscus under different loads by finite element method. Methods: based on the MRI data of knee joint of normal adult volunteers, a three-dimensional finite element model of total knee joint was established. By applying 300,400 and 500N vertical loads to the model femur, the stress, displacement distribution and changes of meniscus under different flexion angles of knee joint under gait were analyzed by dynamic simulation. Results and conclusions: under the loading of 300,400 N and 500 N, respectively, the stress and displacement of meniscus were analyzed. During the normal dynamic flexion of the knee joint, the maximum stress points of 0 擄30 擄and 60 擄~ 90 擄were moved from the anterior edge of the tibial attachment to the posterior edge of the tibial attachment of the medial meniscus posterior angle to the anterior angle of the lateral meniscus. The maximum displacement points moved from the point near the middle point of the inner edge of the medial meniscus to the anterior and upper edge of the lateral meniscus, and the stress and displacement range of the lateral meniscus was larger than that of the medial meniscus. At the same time, the distribution range of stress and displacement is proportional to the magnitude of load and buckling angle. The three-dimensional finite element model of knee meniscus can be used to simulate the stress and displacement distribution of meniscus under different load conditions, which can provide a basis for the prediction of meniscus injury mechanism in clinic.
【作者單位】: 昆明醫(yī)科大學(xué)第一附屬醫(yī)院麻醉科;常州市第四人民醫(yī)院骨科;
【基金】:常州市應(yīng)用基礎(chǔ)研究計(jì)劃項(xiàng)目(CJ20130049)~~
【分類號(hào)】:R318.01;R684
,
本文編號(hào):1567053
本文鏈接:http://sikaile.net/yixuelunwen/waikelunwen/1567053.html
最近更新
教材專著