類風濕關節(jié)炎患者甲襞微循環(huán)的變化及可能機制
發(fā)布時間:2018-07-02 09:05
本文選題:關節(jié)炎 + 類風濕 ; 參考:《河北醫(yī)科大學》2015年碩士論文
【摘要】:目的:類風濕關節(jié)炎(rheumatoid arthritis,RA)是一種彌漫性結締組織病,其特點是滑膜炎和血管炎,逐漸侵蝕,造成關節(jié)破壞。有多種結締組織病存在甲襞微循環(huán)異常,RA也不例外。本研究旨在通過觀察類風濕關節(jié)炎患者病程和疾病活動程度不同階段甲襞微循環(huán)的改變,同時檢測RA患者血清一氧化氮(nitric oxide,NO)、內皮素-1(endothelin-1,ET-1)及血管內皮生長因子(vascular endothelial growth factor,VEGF)的表達水平,以了解RA患者甲襞微循環(huán)的改變及其與內皮因子之間的相關性,探索甲襞微循環(huán)改變在RA發(fā)病中的作用。方法:1選取確診RA患者80例。按RA患者病程長短分組:早期組(病程≤2年)、中期組(病程2~5年)和晚期組(病程≥5年)。按RA患者疾病活動程度分組(以DAS28-ESR為標準):高度活動組(DAS285.1)和中低度活動組(DAS28 2.6~5.1)。2對RA患者進行甲襞微循環(huán)檢查并記錄甲襞微循環(huán)的形態(tài)積分、流態(tài)積分、袢周積分、總積分、輸入枝管徑、輸出枝管徑、袢頂直徑及管袢長。應用酶聯免疫吸附法(enzyme linked immunosorbent assay,ELISA)檢測血清中ET-1和VEGF的表達,采用硝酸還原酶法檢測血清中NO的表達,并觀察患者有無肺間質病變。比較各組間甲襞微循環(huán)、NO、ET-1和VEGF的差異,并對甲襞微循環(huán)各項指標與NO、ET-1及VEGF進行相關性分析。3采用SPSS 21.0軟件進行數據統計分析。結果:1一般資料1.1高度活動組:58例,其中女性41例,男性17例。平均年齡(48.53±13.26)歲。中低度活動組:22例,其中女性14例,男性8例。平均年齡(46.27±17.44)歲。兩組間年齡和性別比較無統計學差異(P0.05)。1.2早期組(病程≤2年):40例,其中女性32例,男性8例。平均年齡(43.88±16.89)歲。中期組(病程2~5年):16例,其中女性9例,男性7例。平均年齡(47.94±10.06)歲。晚期組(病程≥5年):24例,其中女性17例,男性7例。平均年齡(54.92±9.52)歲。早期組和晚期組年齡比較存在統計學差異(P0.05),而早期組和中期組、中期組和晚期組無差異(P均0.05)。三組間性別比較無差異(P0.05)。2甲襞微循環(huán)2.1高度活動組:形態(tài)積分、流態(tài)積分、袢周積分、總積分、輸入枝管徑、輸出枝管徑、袢頂直徑及管袢長分別為2.08±2.32、0.61±0.76、2.28±1.03、4.62±2.07、(7.16±3.24)um、(7.42±2.29)um、(11.68±3.97)um、(181.00±72.17)um;中低度活動組:形態(tài)積分、流態(tài)積分、袢周積分、總積分、輸入枝管徑、輸出枝管徑、袢頂直徑及管袢長分別為1.55±0.55、0.30±0.29、1.49±0.91、3.31±1.22、(6.85±1.52)um、(7.77±2.05)um、(9.85±3.21)um、(183.15±59.29)um。高度活動組在袢周積分和總積分中明顯高于中低度活動組(P0.05)。兩組在形態(tài)積分、流態(tài)積分、管袢長、輸入枝管徑、輸出枝管徑及袢頂直徑無統計學差異(P0.05)。2.2早期組:形態(tài)積分、流態(tài)積分、袢周積分、總積分、輸入枝管徑、輸出枝管徑、袢頂直徑及管袢長分別為1.61±0.82、0.22±0.17、1.81±1.17、5.20±8.52、(6.96±2.61)um、(7.81±2.11)um、(11.30±4.35)um、(190.93±74.39)um;中期組:形態(tài)積分、流態(tài)積分、袢周積分、總積分、輸入枝管徑、輸出枝管徑、袢頂直徑及管袢長分別為1.68±0.64、0.26±0.16、2.39±1.04、4.33±1.43、(6.45±2.07)um、(7.09±2.30)um、(11.00±3.19)um、(166.00±55.48)um;晚期組:形態(tài)積分、流態(tài)積分、袢周積分、總積分、輸入枝管徑、輸出枝管徑、袢頂直徑及管袢長分別為1.86±0.97、0.32±0.16、2.06±1.29、4.24±3.70、(7.88±3.82)um、(7.36±2.53)um、(10.64±3.50)um、(177.21±69.92)um。早期組流態(tài)積分明顯低于晚期組(P0.05),而早期組與中期組、中期組與晚期組無差別(P0.05)。三組間的形態(tài)積分、袢周積分、總積分、輸入枝管徑、輸出枝管徑、袢頂直徑及管袢長均無差異(P0.05)。3血清NO、ET-1、VEGF表達水平3.1高度活動組:血清NO、ET-1、VEGF分別為(24.86±20.41)umol/L、(119.02±37.68)ng/ml和(54.16±33.28)pg/ml;中低度活動組:血清NO、ET-1、VEGF分別為(24.67±13.21)umol/L、(131.06±35.43)ng/ml、(33.47±9.68)pg/ml。高度活動組血清VEGF明顯高于中低度活動組(P0.05),兩組間血清NO和血清ET-1無差異(P0.05)。3.2早期組:血清NO、ET-1、VEGF分別為(21.59±11.45)umol/L、(133.48±28.88)ng/ml、(33.47±19.68)pg/ml;中期組:血清NO、ET-1、VEGF分別為(24.46±11.31)umol/L、(120.01±42.26)ng/ml、(61.65±43.27)pg/ml;晚期組:血清NO、ET-1、VEGF分別為(25.48±27.98)umol/L、(101.12±39.03)ng/ml、(53.43±88.45)pg/ml。三組間血清NO、ET-1和VEGF無統計學差異(P0.05)。4甲襞微循環(huán)與血清NO、ET-1、VEGF表達水平的相關性分析4.1甲襞微循環(huán)與血清NO:流態(tài)積分、袢周積分及總積分分別與血清NO呈負相關(相關系數r分別為-0.225,-0.210,-0.256,P均0.05)。然而,形態(tài)積分、輸入枝管徑、輸出枝管徑、袢頂直徑及管袢長與血清NO無相關性(P均0.05)。4.2甲襞微循環(huán)與血清ET-1:形態(tài)積分及總積分分別與血清ET-1水平呈正相關(相關系數r分別為0.262,0.267,P0.05),輸入枝管徑、輸出枝管徑、管袢長分別與血清ET-1呈負相關(相關系數r分別為-0.323,-0.408,-0.261,P0.05)。流態(tài)積分、袢周積分及袢頂直徑分別與血清ET-1無相關性(P0.05)。4.3甲襞微循環(huán)與血清VEGF:形態(tài)積分、流態(tài)積分、袢周積分、總積分、輸入枝管徑、輸出枝管徑、袢頂直徑及管袢長分別與血清VEGF水平無相關性(P均0.05)。結論:1高度活動組的甲襞微循環(huán)袢周積分和總積分高于中低度活動組,表明微循環(huán)異常在RA的發(fā)病過程中可能起一定作用。2高度活動組血清VEGF濃度高于中低度活動組,表明VEGF在RA的發(fā)病過程中可能起一定作用。1 RA患者的微循環(huán)血管損傷與NO和ET-1有關。
[Abstract]:Objective: rheumatoid arthritis (RA) is a diffuse connective tissue disease characterized by synovitis and vasculitis, gradually eroding and causing joint destruction. There are a variety of connective tissue diseases with abnormal nailfold microcirculation and RA. The purpose of this study was to observe the course of disease and the degree of disease activity in patients with rheumatoid arthritis. The changes in the nailfold microcirculation at the same stage were used to detect the levels of nitric oxide (NO), endothelin -1 (endothelin-1, ET-1) and vascular endothelial growth factor (vascular endothelial growth factor, VEGF) in RA patients, in order to understand the changes in the Nailfold Microcirculation and the correlation between the Nailfold Microcirculation and the endothelial factors and explore the nail fold. Methods: the role of microcirculation changes in the pathogenesis of RA. 1 select 80 patients with confirmed RA. According to the duration of RA, early group (course of disease is less than 2 years), medium group (course of disease 2~5) and late group (course of disease > 5 years). According to the degree of disease activity of RA patients (DAS28-ESR as the standard): high activity group (DAS285.1) and middle and low activity group (DAS28 2.6~5.1) .2 was used to examine the Nailfold Microcirculation and to record the form integral of nailfold microcirculation, the integral of the nailfold microcirculation, the integral of the loop, the total integral, the input branch diameter, the output branch diameter, the diameter of the loop top and the length of the loop. The expression of ET-1 and VEGF in serum was detected by enzyme linked immunosorbent assay (enzyme linked immunosorbent assay, ELISA), and the nitrate reductase was used. The expression of NO in the serum was detected and the pulmonary interstitial lesions were observed in the patients. The differences of nailfold microcirculation, NO, ET-1 and VEGF were compared in each group. The correlation analysis of various indexes of Nailfold Microcirculation with NO, ET-1 and VEGF was used to analyze.3 using SPSS 21 software. Results: 1 general data 1.1 highly active group: 58 cases, of which 4 women were 4. 1 cases, 17 cases of average age (48.53 + 13.26). Middle and low activity group: 22 cases, 14 women and 8 men. The average age was (46.27 + 17.44) years. The age and sex of the two groups were not statistically different (P0.05) in the early.1.2 group (the course of the disease was less than 2 years): 40 cases, among them, the average age (2~5). 16 cases, including 9 women and 7 men. The average age (47.94 + 10.06) years. The late group (course of disease > 5 years): 24 cases, including 17 women and 7 men. The average age is (54.92 + 9.52) years. There is a statistical difference between the early and late group (P0.05), but there is no difference between the early group and the middle group, the middle group and the late group (P 0.05). Three groups. No difference (P0.05).2 nailfold microcirculation 2.1 high activity group: shape integral, flow integral, loop integral, total integral, input branch pipe diameter, output branch diameter, loop top diameter and loop length are 2.08 + 2.32,0.61 + 0.76,2.28 + 1.03,4.62 + 2.07, (7.16 + 3.24) um, (7.42 + 2.29) um, (11.68 + 3.97) um, (181 + 72.17) um; middle and low activity Group: morphological integral, flow integral, loop integral, total integral, input branch pipe diameter, output branch pipe diameter, loop top diameter and loop length were 1.55 + 0.55,0.30 + 0.29,1.49 + 0.91,3.31 + 1.22, (6.85 + 1.52) um, (7.77 + 2.05) um, (9.85 + 3.21) um and (183.15 + 59.29) um. high activity group were obviously higher than middle and low activity in loop integral and total integral. Group (P0.05). In the two group, the form integral, the manifold integral, the length of the pipe loop, the input branch pipe diameter, the output branch pipe diameter and the loop top diameter have no statistical difference (P0.05) early.2.2 group: the shape integral, the flow integral, the loop integral, the total integral, the input branch pipe diameter, the output branch pipe diameter, the loop top diameter and the loop length are respectively 1.61 + 0.82,0.22 + 0.17,1.81 + 1.17,5.20 + 8.52, respectively. (6.96 + 2.61) um, (7.81 + 2.11) um, (11.30 + 4.35) um, (190.93 + 74.39) um, medium group: form integral, flow integral, loop integral, total integral, input branch diameter, output branch diameter, loop top diameter and loop length are 1.68 + 0.64,0.26 + 0.16,2.39 + 1.43, (6.45 + 2.07) um, (7.09 + 74.39) um, um; um; night um; um; late um, um; um; late um, um; night um; um; late um, um; night um; um; night um; um; late um. Night um; um; night um; um; night um; um; night um; um; um; late um, um; um; night um; um; night um; um; night um; um; um; late um, um; um; night um; um; um; late um. Period group: form integral, flow integral, loop integral, total integral, input branch pipe diameter, output branch pipe diameter, loop top diameter and loop length are 1.86 + 0.97,0.32 + 0.16,2.06 + 1.29,4.24 + 3.70, (7.88 + 3.82) um, (7.36 + 2.53) um, (10.64 + 3.50) um, (177.21 + 69.92) um. early group flow integral is obviously lower than that in late group (P0.05), and early group and middle There was no difference between the mid-term group and the late group (P0.05). The morphological integral of the three groups, loop integral, total integral, the input branch diameter, the output branch diameter, the diameter of the loop top and the length of the loop were not different (P0.05).3 serum NO, ET-1, VEGF expression level in the high activity group: the serum NO, ET-1, VEGF were (24.86 + 20.41) umol/L, (119.02 + 37.68) ng/ml and (54.16 + 3). 3.28) pg/ml; middle and low activity group: serum NO, ET-1, VEGF were (24.67 + 13.21) umol/L, (131.06 + 35.43) ng/ml, and (33.47 + 9.68) pg/ml. high activity group was significantly higher than middle and low activity group (P0.05). The serum NO and serum ET-1 were no difference between two groups (P0.05) early group: (21.59 + 11.45) respectively, (133.48 + 2) 8.88) ng/ml, (33.47 + 19.68) pg/ml, medium group: serum NO, ET-1, VEGF, respectively (24.46 + 11.31) umol/L, (120.01 + 42.26) ng/ml, (61.65 + 43.27) pg/ml, and late group: serum NO, ET-1, VEGF respectively (25.48 + 27.98) umol/L, (101.12 + 39.03) Correlation analysis of the expression level of NO, ET-1, VEGF in the ring and serum, 4.1 nailfold microcirculation and serum NO: flow integration, loop integral and total integral were negatively correlated with serum NO (the correlation coefficient r was -0.225, -0.210, -0.256, P 0.05 respectively). However, the morphological integral, the input branch diameter, the output branch pipe diameter, the loop top diameter and the loop length were not different from the serum NO. The P 0.05.4.2 nailfold microcirculation and the integral integral and total integral of serum ET-1: were positively correlated with the level of serum ET-1 respectively (the correlation coefficient r was 0.262,0.267, P0.05), the input branch diameter, the output branch diameter, and the length of the loop of the tube were negatively correlated with the serum ET-1 (the correlation coefficient r is -0.323, -0.408, -0.261, etc.). No correlation (P0.05).4.3 nailfold microcirculation and serum VEGF: form integration with serum ET-1. Flow integral, loop integral, total integral, input branch diameter, output branch diameter, loop top diameter and loop length were not related to serum VEGF level respectively (P 0.05). Conclusion: the weekly integral of Nailfold Microcirculation loop in the 1 high activity group and The total integral is higher than the middle and low activity group, which indicates that the microcirculation abnormal in the pathogenesis of RA may play a role in.2 high activity group, the serum VEGF concentration is higher than the middle and low activity group, which indicates that VEGF may play a role in the microcirculatory vascular damage of.1 RA patients during the pathogenesis of RA, which is related to NO and ET-1.
【學位授予單位】:河北醫(yī)科大學
【學位級別】:碩士
【學位授予年份】:2015
【分類號】:R593.22
【參考文獻】
相關期刊論文 前2條
1 顧s,
本文編號:2089625
本文鏈接:http://sikaile.net/yixuelunwen/nfm/2089625.html
最近更新
教材專著