間充質(zhì)干細(xì)胞通過活化M2型巨噬細(xì)胞減輕急性腎損傷的機(jī)制研究
本文選題:間充質(zhì)干細(xì)胞 + 橫紋肌溶解 ; 參考:《中國(guó)人民解放軍醫(yī)學(xué)院》2014年博士論文
【摘要】:研究背景橫紋肌溶解(rhabdomyolysis,RM)指任何原因引起的廣泛的橫紋肌細(xì)胞壞死,肌細(xì)胞內(nèi)容物外漏至細(xì)胞外液及血液循環(huán)中,導(dǎo)致急性腎損傷(acute kidney injury, AKI)、電解質(zhì)紊亂等一系列并發(fā)癥,重癥患者預(yù)后極差。與肌紅蛋白尿相關(guān)的AKI是創(chuàng)傷和非創(chuàng)傷性橫紋肌溶解最嚴(yán)重的并發(fā)癥,現(xiàn)有治療無法根本改善其預(yù)后。如何提高RM后腎小管上皮細(xì)胞壞死的修復(fù)再生、降低AKI死亡率,一直是醫(yī)學(xué)界研究的重大課題。近年來骨髓間充質(zhì)干細(xì)胞(mesenchymal stem cells, MSCs)在急慢性腎臟病中的應(yīng)用日益受到關(guān)注,給AKI的治療指明新的方向。多項(xiàng)研究均證實(shí),MSCs治療可明顯改善腎小管損傷并有利于腎功能的恢復(fù)。巨噬細(xì)胞是天然免疫系統(tǒng)中重要的調(diào)節(jié)細(xì)胞,可分為經(jīng)典活化的M1型巨噬細(xì)胞和替代性活化的M2型巨噬細(xì)胞兩種極性狀態(tài)。M2型巨噬細(xì)胞具有抑制炎癥反應(yīng),促進(jìn)組織重塑和再生修復(fù)的功能。體外研究中MSCs可與巨噬細(xì)胞相互作用,促進(jìn)M2型巨噬細(xì)胞的產(chǎn)生。那么,誘導(dǎo)M2型巨噬細(xì)胞的生成是否是MSCs減輕AKI的機(jī)制?目前尚無相關(guān)報(bào)道。本研究旨在建立RM所致AKI的小鼠動(dòng)物模型,探討MSCs是否通過誘導(dǎo)M2型巨噬細(xì)胞的生成來減輕AKI,為闡明MSCs治療減輕AKI的機(jī)制提供理論依據(jù)。 方法第一部分C57BL/6小鼠經(jīng)雙下肢肌肉注射50%甘油8ml/kg建立RM所致AKI模型,觀察第6h、12h、24h、48h、72h、96h、120h和168h時(shí)間點(diǎn)血尿素氮(BUN)、肌酐(Cr)和磷酸肌酸激酶(CK)的變化趨勢(shì),以及腎臟、肌肉和肺臟的病理改變。將C57BL/6小鼠隨機(jī)分為Sham+生理鹽水(NS)組、Sham+MSCs組、RM+NS組和RM+MSCs組。6小時(shí)后,MSCs組給予1×106個(gè)紅色熒光蛋白(RFP)標(biāo)記的C57BL/6小鼠骨髓來源的MSCs尾靜脈注射, NS組給予等體積的生理鹽水尾靜脈注射;(1)生化檢測(cè)血BUN、Cr和CK水平(n=10);(2)酶聯(lián)免疫吸附測(cè)定法(ELISA)檢測(cè)血清細(xì)胞因子IL-6、TNF-α和IL-10水平(n=5);(3)光鏡觀察肌肉和腎臟病理損傷程度,計(jì)算腎小管壞死評(píng)分(n=4);(4)PCNA免疫組化評(píng)價(jià)腎小管上皮細(xì)胞損傷后增殖情況(n=5);(5)雙光子顯微鏡檢測(cè)RFP標(biāo)記的MSCs在RM模型小鼠各器官的定植情況(n=3)。 第二部分C57BL/6小鼠經(jīng)50%甘油8ml/kg肌肉注射建立RM模型,隨機(jī)分為RM+NS組和RM+MSCs組,n=5。取第24h、48h和72h的腎臟組織,免疫熒光技術(shù)檢測(cè)巨噬細(xì)胞(F4/80)浸潤(rùn)數(shù)量的變化和M2型巨噬細(xì)胞(CD206)浸潤(rùn)數(shù)量的變化;Western Blot檢測(cè)橫紋肌溶解后不同時(shí)間點(diǎn)的腎臟組織M2型巨噬細(xì)胞標(biāo)志物CD206的表達(dá)水平。第24小時(shí),Western Blot檢測(cè)sham+NS組、sham+MSCs組、RM+NS組和RM+MSCs組的M2型巨噬細(xì)胞標(biāo)志物CD206表達(dá)情況。在損傷后第24小時(shí),以MSCs治療的橫紋肌溶解AKI小鼠為研究對(duì)象,使用氯屈膦酸二鈉脂質(zhì)體清除其體內(nèi)的巨噬細(xì)胞,空白脂質(zhì)體作為對(duì)照,觀察兩組小鼠在第48h和72h血BUN、Cr和腎臟病理的改變。 第三部分將小鼠巨噬細(xì)胞系RAW264.7細(xì)胞分為三組:常規(guī)培養(yǎng)的細(xì)胞為M0組,脂多糖(LPS)2.5ug/ml刺激2h的細(xì)胞為M1組,LPS刺激后并與MSCs共培養(yǎng)72小時(shí)的細(xì)胞為M2組。使用細(xì)胞免疫熒光檢測(cè)三組細(xì)胞的巨噬細(xì)胞表面標(biāo)志物F4/80和M2型巨噬細(xì)胞表面標(biāo)志物CD206的表達(dá),流式細(xì)胞技術(shù)檢測(cè)各組的CD206和IL-10表達(dá),ELISA檢測(cè)不同時(shí)間點(diǎn)培養(yǎng)液上清IL-6、TNF-α和IL-10的水平(n=5)。使用氯膦酸二鈉脂質(zhì)體清除小鼠體內(nèi)巨噬細(xì)胞,然后建立橫紋肌溶解AKI模型,并隨即尾靜脈注射1×107個(gè)M0組、M1組和M2組的RAW264.7細(xì)胞(n=5)。在AKI的第72h檢測(cè)血BUN、Cr和腎臟病理。 結(jié)果本研究第一部分,成功建立了C57BL/6小鼠RM所致AKI模型,損傷后血BUN、Cr和CK進(jìn)行性升高,并觀察到CK于第24小時(shí)達(dá)峰值,BUN和Cr于第72小時(shí)達(dá)峰值的趨勢(shì)。第6h經(jīng)尾靜脈注射1×106個(gè)MSCs或等體積的NS對(duì)照,發(fā)現(xiàn)MSCs治療使RM小鼠血BUN、Cr和CK水平明顯下降(P0.01),,血促炎細(xì)胞因子IL-6和TNF-α的水平明顯下降(P0.01),血抑炎細(xì)胞因子IL-10的水平明顯升高(P0.01)。腎組織PAS染色顯示RM+MSCs組的腎小管損傷減輕,腎小管壞死評(píng)分下降。PCNA免疫組化見RM+MSCs組的腎小管上皮細(xì)胞明顯增生。雙光子顯微鏡活體檢測(cè)MSCs主要定植在肺臟和肌肉,腎臟未發(fā)現(xiàn)RFP標(biāo)記的MSCs,并用組織免疫熒光證實(shí)。 本研究第二部分,組織免疫熒光發(fā)現(xiàn)RM發(fā)生后,腎臟的巨噬細(xì)胞浸潤(rùn)逐漸增加,RM+MSCs組腎組織CD206陽性的M2型巨噬細(xì)胞提前出現(xiàn)。WesternBlot證實(shí)RM+MSCs組腎臟M2型巨噬細(xì)胞標(biāo)志物CD206的表達(dá)水平顯著高于RM+NS組(P0.01),且表達(dá)在損傷后呈上升趨勢(shì)。不同組腎臟CD206表達(dá)分析發(fā)現(xiàn):損傷后第24小時(shí),僅RM+MSCs組出現(xiàn)CD206的明顯表達(dá)(P0.01)。MSCs治療AKI小鼠的巨噬細(xì)胞清除實(shí)驗(yàn)證實(shí),在第24小時(shí)清除M2型巨噬細(xì)胞使第48h和72h小鼠的血BUN和Cr再次升高,伴腎臟損傷病理加重。 本研究第三部分,細(xì)胞免疫熒光檢測(cè)M0組、M1組及M2組的RAW264.7細(xì)胞均表達(dá)F4/80,僅M2組高表達(dá)CD206。流式細(xì)胞技術(shù)檢測(cè)發(fā)現(xiàn)M2組的RAW264.7細(xì)胞高表達(dá)CD206和IL-10。ELISA測(cè)定RAW264.7培養(yǎng)液上清細(xì)胞因子濃度,LPS使IL-6和TNF-α的水平升高,MSCs使IL-6和TNF-α的水平降低、IL-10的水平升高(P0.01)。氯屈膦酸二鈉脂質(zhì)體清除小鼠體內(nèi)的巨噬細(xì)胞后建立橫紋肌溶解AKI模型,空白脂質(zhì)體作為對(duì)照組,給予不同組巨噬細(xì)胞過繼轉(zhuǎn)移,損傷后第72小時(shí)發(fā)現(xiàn)接受M2組RAW264.7細(xì)胞小鼠的血清BUN、Cr和病理損傷均較對(duì)照組、M0組和M1組明顯減低(P0.01)。 結(jié)論(1)MSCs治療可調(diào)節(jié)體內(nèi)炎癥反應(yīng),減輕RM所致AKI;(2)MSCs不通過直接定植于腎臟發(fā)揮保護(hù)作用;(3)MSCs治療促進(jìn)腎臟M2型巨噬細(xì)胞浸潤(rùn)的數(shù)量增加,清除巨噬細(xì)胞使已減輕的腎損傷再次加重(4)MSCs可在體外誘導(dǎo)巨噬細(xì)胞向M2型的轉(zhuǎn)換。(5)過繼轉(zhuǎn)移M2型巨噬細(xì)胞可改善RM所致的AKI。
[Abstract]:Background rhabdomyolysis (rhabdomyolysis, RM) refers to a wide range of rhabdomyocyte necrosis caused by any cause, muscle cell contents leaking into extracellular fluid and blood circulation, causing acute renal injury (acute kidney injury, AKI), electrolyte disorder and a series of disorders. The prognosis of severe patients is very poor. The AKI related to myoglobin urine is very poor. It is the most serious complication of traumatic and non traumatic rhabdomyolysis. Existing treatment can not improve its prognosis. How to improve the repair and regeneration of tubular necrosis of renal tubular cells after RM and reduce the mortality of AKI has been a major issue in the medical field. In recent years, bone marrow mesenchymal stem cells (mesenchymal stem cells, MSCs) are in acute and chronic kidney. A number of studies have confirmed that MSCs therapy can obviously improve renal tubular injury and benefit the recovery of renal function. Macrophages are important regulatory cells in the natural immune system, which can be divided into classical activated M1 type macrophages and alternative activated M2 type megagagi. .M2 type macrophages of two polar states have the function of inhibiting inflammatory response and promoting tissue remodeling and regeneration. In vitro, MSCs can interact with macrophages to promote the production of M2 type macrophages. Then, is the mechanism of inducing M2 type macrophages to be a mechanism for MSCs to reduce AKI? There is no related report. This study aims at this study. In the establishment of a mouse model of AKI induced by RM, it is discussed whether or not MSCs reduces AKI by inducing the formation of M2 type macrophages, providing a theoretical basis for clarifying the mechanism of MSCs therapy to alleviate AKI.
Methods in part 1, C57BL/6 mice were injected with 50% glycerol 8ml/kg to establish a RM induced AKI model, and the changes in blood urea nitrogen, creatinine and creatine kinase were observed at 6h, 12h, 24h, 48h, 72h, 96h, 120h and 168h time, and the pathological changes of the kidney, muscle and lungs. After.6 hours in group NS, group Sham+MSCs, group RM+NS and RM+MSCs, group MSCs was given MSCs tail vein of bone marrow of C57BL/6 mice with 1 x 106 red fluorescent protein (RFP) labeled C57BL/6 mice, and NS group was given equal volume of saline tail vein, and (1) biochemical test of BUN, Cr and levels; (2) enzyme linked immunosorbent assay Test serum cytokine IL-6, TNF- alpha and IL-10 level (n=5); (3) observe pathological damage of muscle and kidney and calculate renal tubular necrosis score (n=4); (4) PCNA immunohistochemistry to evaluate the proliferation of renal tubular epithelial cells (n=5); (5) double light microscopy detection of MSCs in RFP markers in each organ of RM model mice Condition (n=3).
The second part of C57BL/6 mice were injected with 50% glycerol and 8ml/kg to establish RM model. They were randomly divided into group RM+NS and RM+MSCs group. N=5. took the renal tissue of 24h, 48h and 72h. The changes in the number of macrophage (F4/80) infiltration and the quantity of M2 macrophage (CD206) were detected by immunofluorescence. The expression level of M2 type macrophage marker CD206 of the kidney tissue at the same time. Twenty-fourth hours, Western Blot was used to detect the expression of CD206 expression of M2 type macrophage markers in group sham+NS, sham+MSCs, RM+NS and RM+MSCs. Twenty-fourth hours after the injury, AKI mice were dissolved in the rhabdomydric acid two with MSCs treatment, and chlordric acid two was used. Sodium liposomes scavenged macrophages in vivo and blank liposomes as controls. The changes of BUN, Cr and renal pathology in 48h and 72h blood of two groups of mice were observed.
In the third part, the mouse macrophage RAW264.7 cells were divided into three groups: the conventional cultured cells were group M0, the lipopolysaccharide (LPS) 2.5ug/ml stimulated 2H cells in the M1 group, and the LPS stimulated and the MSCs co cultured for 72 hours was the M2 group. The macrophage surface markers, F4/80 and M2 macrophages, were detected by cell immunofluorescence. The expression of surface marker CD206, CD206 and IL-10 expression in each group were detected by flow cytometry. ELISA was used to detect the level of IL-6, TNF- A and IL-10 (n=5) at different time points. Chlorphosphonic acid two sodium liposomes were used to remove macrophages in mice, and then a rhabdomyolysis AKI model was established, and then 1 x 107 M0 groups were injected into the tail vein, M1. M1 RAW264.7 cells (n=5) in group M2 and group AKI were detected in BUN, Cr and renal pathology at 72h of AKI.
Results in the first part of this study, the AKI model induced by RM in C57BL/6 mice was successfully established. The blood BUN, Cr and CK were increased after injury, and the peak value of CK at twenty-fourth hours was observed, and the peak value of BUN and Cr at seventy-second hours was reached. 1 * 106 MSCs or equal volume NS controls were injected through the tail vein. Significantly decreased (P0.01), blood proinflammatory cytokines IL-6 and TNF- alpha significantly decreased (P0.01), the level of blood suppressor cell factor IL-10 increased significantly (P0.01). Renal tissue PAS staining showed that renal tubule injury in group RM+MSCs was reduced, renal tubular necrosis score decreased in.PCNA immunization, and the renal tubular epithelial cells in the RM+MSCs group were obviously proliferated. In vivo, MSCs was mainly colonized in lungs and muscles, and no RFP labeled MSCs was found in the kidneys. The results were confirmed by tissue immunofluorescence.
In the second part of this study, tissue immunofluorescence found that the infiltration of macrophages in the kidneys increased gradually, and the CD206 positive M2 macrophages in the RM+MSCs group showed.WesternBlot in group RM+MSCs, which showed that the expression level of CD206 of the M2 type macrophage marker in the RM+MSCs group was significantly higher than that in the RM+NS group (P0.01), and the expression increased after the injury. Trend. CD206 expression analysis in different groups of kidneys found that twenty-fourth hours after injury, only RM+MSCs group showed CD206 obvious expression (P0.01).MSCs treatment of AKI mice macrophage clearance experiment confirmed that the clearance of M2 type macrophages in twenty-fourth hours made 48h and 72h mice blood BUN and Cr increased again, with the pathological aggravation of renal injury.
The third part of this study, cell immunofluorescence test M0 group, M1 group and M2 group RAW264.7 cells all express F4/80, only M2 group high expression CD206. flow cytometry detection found that RAW264.7 cells in M2 group high expression CD206 and IL-10.ELISA determine the concentration of cell factor in the RAW264.7 culture liquid supernatant. The level of F- alpha and the level of IL-10 increased (P0.01). After scavenging of chlordronic acid two liposomes, the rhabdomyolysis AKI model was established. The blank liposomes were used as the control group, and the macrophages were adoptive and transferred in different groups. The serum BUN, Cr and pathological lesion of the M2 group RAW264.7 cell mice were found after seventy-second hours of injury. The injury was significantly lower in the M0 group and the M1 group than in the control group (P0.01).
Conclusion (1) MSCs therapy can regulate the inflammatory response in the body and reduce the AKI caused by RM; (2) MSCs does not use the direct colonization of the kidney to protect the kidney; (3) MSCs therapy promotes the increase in the number of M2 macrophage infiltration in the kidney, and clears the macrophages to aggravate the reduced renal injury (4) MSCs can induce the conversion of macrophage to M2 type in vitro. 5) adoptive transfer of M2 macrophages can improve the AKI. induced by RM.
【學(xué)位授予單位】:中國(guó)人民解放軍醫(yī)學(xué)院
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2014
【分類號(hào)】:R692
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 葉天星,曹雪濤;巨噬細(xì)胞作用的新概念:正反兩面性[J];國(guó)外醫(yī)學(xué)(免疫學(xué)分冊(cè));1990年02期
2 彭則;呼吸道細(xì)菌感染及在巨噬細(xì)胞上的信息傳遞途徑[J];國(guó)外醫(yī)學(xué).呼吸系統(tǒng)分冊(cè);1999年01期
3 付平,許國(guó)章;巨噬細(xì)胞與腎損傷[J];國(guó)外醫(yī)學(xué).泌尿系統(tǒng)分冊(cè);2000年06期
4 夏飛,劉勝武,魏雅稚,肖凌;結(jié)核分枝桿菌誘導(dǎo)宿主巨噬細(xì)胞凋亡機(jī)制初探[J];中華微生物學(xué)和免疫學(xué)雜志;2005年06期
5 葛晶;成蓓;;過氧化物酶體增殖體激活受體和肝X受體對(duì)巨噬細(xì)胞作用的研究進(jìn)展[J];國(guó)外醫(yī)學(xué)(老年醫(yī)學(xué)分冊(cè));2006年01期
6 張鳳;熊思東;;巨噬細(xì)胞的極化及其意義[J];細(xì)胞生物學(xué)雜志;2007年01期
7 韓君勇;李艷波;;不同壓力對(duì)巨噬細(xì)胞ATP結(jié)合盒轉(zhuǎn)運(yùn)子A_1表達(dá)的影響[J];中國(guó)心血管病研究;2008年05期
8 熊思東;;疾病發(fā)病中的巨噬細(xì)胞極化:機(jī)制與作用[J];現(xiàn)代免疫學(xué);2010年05期
9 吳虢東;張才軍;王玲;吳磊;寸新華;曹霞;;抗結(jié)核天然藥物篩選的巨噬細(xì)胞模型研究[J];昆明醫(yī)學(xué)院學(xué)報(bào);2010年11期
10 李丹;任亞娜;范華驊;;巨噬細(xì)胞的分類及其調(diào)節(jié)性功能的差異[J];生命科學(xué);2011年03期
相關(guān)會(huì)議論文 前10條
1 宋盛;周非凡;邢達(dá);;PDT誘導(dǎo)的凋亡細(xì)胞對(duì)巨噬細(xì)胞NO合成的影響[A];第七屆全國(guó)光生物學(xué)學(xué)術(shù)會(huì)議論文摘要集[C];2010年
2 張磊;朱建華;黃元偉;姚航平;;血管緊張素Ⅱ?qū)奘杉?xì)胞(THP-1重細(xì)胞)凝集素樣氧化低密度脂蛋白受體表達(dá)的影響[A];浙江省免疫學(xué)會(huì)第五次學(xué)術(shù)研討會(huì)論文匯編[C];2004年
3 宋盛;邢達(dá);周非凡;;PDT誘導(dǎo)的凋亡細(xì)胞對(duì)巨噬細(xì)胞NO合成的影響[A];第十一次中國(guó)生物物理學(xué)術(shù)大會(huì)暨第九屆全國(guó)會(huì)員代表大會(huì)摘要集[C];2009年
4 趙莉;姚樹桐;田華;楊娜娜;桑慧;焦鵬;王義圍;秦樹存;;氧化高密度脂蛋白通過內(nèi)質(zhì)網(wǎng)應(yīng)激凋亡途徑誘導(dǎo)巨噬細(xì)胞凋亡[A];第十二屆全國(guó)脂質(zhì)與脂蛋白學(xué)術(shù)會(huì)議論文匯編[C];2014年
5 洪敏;余黎;華永慶;朱荃;;雌二醇激活巨噬細(xì)胞及內(nèi)異癥藥物效應(yīng)靶點(diǎn)的研究[A];中國(guó)藥理學(xué)會(huì)第八次全國(guó)代表大會(huì)暨全國(guó)藥理學(xué)術(shù)會(huì)議論文摘要匯編[C];2002年
6 唐瀾;王麗;付度關(guān);趙勇;曾和松;;瘦素對(duì)巨噬細(xì)胞白介素-1表達(dá)的影響[A];中華醫(yī)學(xué)會(huì)心血管病學(xué)分會(huì)第八次全國(guó)心血管病學(xué)術(shù)會(huì)議匯編[C];2006年
7 郭紫芬;袁皓瑜;郭琰;庹勤慧;廖端芳;;依澤替米貝通過調(diào)控基因表達(dá)抑制巨噬細(xì)胞內(nèi)脂質(zhì)蓄積[A];第七屆海峽兩岸心血管科學(xué)研討會(huì)論文集[C];2009年
8 王少霞;李楊;楊蕾蕾;左紅艷;劉肖;徐新萍;王德文;;極低頻電磁場(chǎng)暴露對(duì)大鼠肺組織中巨噬細(xì)胞的影響[A];第十三屆中國(guó)體視學(xué)與圖像分析學(xué)術(shù)會(huì)議論文集[C];2013年
9 丁晨光;田普訓(xùn);薛武軍;鄭瑾;段萬里;趙艷龍;席敏;李楊;;Treg誘導(dǎo)巨噬細(xì)胞向M2型轉(zhuǎn)化的作用研究[A];2013中國(guó)器官移植大會(huì)論文匯編[C];2013年
10 呂建新;金麗琴;袁謙;金晶;彭穎;李東;;巨噬細(xì)胞激活的標(biāo)志物研究[A];新世紀(jì) 新機(jī)遇 新挑戰(zhàn)——知識(shí)創(chuàng)新和高新技術(shù)產(chǎn)業(yè)發(fā)展(上冊(cè))[C];2001年
相關(guān)重要報(bào)紙文章 前10條
1 通訊員 李靜 記者 胡德榮;惡性腫瘤巨噬細(xì)胞未必皆“惡人”[N];健康報(bào);2014年
2 蘭克;以嘗試用巨噬細(xì)胞治癱瘓[N];科技日?qǐng)?bào);2000年
3 薛佳;免疫系統(tǒng)——人體的“衛(wèi)士”[N];保健時(shí)報(bào);2009年
4 侯嘉 何新鄉(xiāng);硒的神奇功能[N];中國(guó)食品質(zhì)量報(bào);2003年
5 記者 胡德榮;鐵泵蛋白“維穩(wěn)”鐵代謝作用首次闡明[N];健康報(bào);2011年
6 唐穎 倪兵 陳代杰;巨噬細(xì)胞泡沫化抑制劑研究快步進(jìn)行[N];中國(guó)醫(yī)藥報(bào);2006年
7 劉元江;新發(fā)現(xiàn)解釋腫瘤為何易成“漏網(wǎng)之魚”[N];醫(yī)藥經(jīng)濟(jì)報(bào);2007年
8 本報(bào)記者 侯嘉 通訊員 何新鄉(xiāng);今天你補(bǔ)硒了嗎[N];醫(yī)藥經(jīng)濟(jì)報(bào);2003年
9 左志剛;升血小板藥使用注意[N];醫(yī)藥養(yǎng)生保健報(bào);2007年
10 記者 許琦敏;“鐵泵”蛋白幫助回收鐵元素[N];文匯報(bào);2011年
相關(guān)博士學(xué)位論文 前10條
1 戴菱菱;巨噬細(xì)胞的替代激活抑制脂毒性引起的巨噬細(xì)胞死亡[D];中南大學(xué);2013年
2 馬翠卿;GAS下調(diào)巨噬細(xì)胞炎癥因子的作用及機(jī)制研究[D];河北醫(yī)科大學(xué);2011年
3 黃亞東;兔不同亞型單核/巨噬細(xì)胞與動(dòng)脈粥樣硬化發(fā)病關(guān)系的研究[D];中國(guó)協(xié)和醫(yī)科大學(xué);1991年
4 劉灝;巨噬細(xì)胞再極化[D];重慶醫(yī)科大學(xué);2011年
5 高飛;年齡相關(guān)性巨噬細(xì)胞極化對(duì)骨修復(fù)再生作用的研究[D];華中科技大學(xué);2013年
6 劉芳;ABCG1基因表達(dá)對(duì)巨噬細(xì)胞功能影響及在動(dòng)脈粥樣硬化中作用的研究[D];北京協(xié)和醫(yī)學(xué)院;2014年
7 周江睿;神經(jīng)肽Y對(duì)巨噬細(xì)胞炎性因子和小分子炎癥介質(zhì)的調(diào)節(jié)及機(jī)制研究[D];第二軍醫(yī)大學(xué);2012年
8 趙魯杭;黃芪多糖的制備及其對(duì)巨噬細(xì)胞和樹突狀細(xì)胞免疫功能的影響[D];浙江大學(xué);2011年
9 潘宇飛;信號(hào)調(diào)節(jié)蛋白α調(diào)節(jié)腫瘤相關(guān)巨噬細(xì)胞功能的作用與機(jī)制研究[D];第二軍醫(yī)大學(xué);2013年
10 陸寧;巨噬細(xì)胞中表皮生長(zhǎng)因子受體激活對(duì)細(xì)胞因子及實(shí)驗(yàn)性結(jié)腸炎的調(diào)節(jié)作用[D];天津醫(yī)科大學(xué);2014年
相關(guān)碩士學(xué)位論文 前10條
1 蔣璐;運(yùn)動(dòng)對(duì)大鼠巨噬細(xì)胞游離鐵代謝的影響及機(jī)制探討[D];江蘇大學(xué);2007年
2 朵瑞雪;免疫突觸的形成對(duì)類風(fēng)濕關(guān)節(jié)炎中巨噬細(xì)胞凋亡率影響的研究[D];第四軍醫(yī)大學(xué);2011年
3 劉丹霞;結(jié)核桿菌對(duì)感染宿主巨噬細(xì)胞應(yīng)激的調(diào)控作用及其機(jī)制研究[D];石河子大學(xué);2013年
4 陳南鵬;腫瘤相關(guān)巨噬細(xì)胞的定量蛋白質(zhì)組學(xué)研究[D];暨南大學(xué);2011年
5 謝燕霞;蘆筍多糖對(duì)巨噬細(xì)胞的免疫調(diào)節(jié)研究[D];山東師范大學(xué);2008年
6 劉譯聰;巴西天然蜂膠對(duì)牙齦卟啉單胞菌激活的巨噬細(xì)胞極化的調(diào)控及機(jī)制探討[D];吉林大學(xué);2014年
7 文明智;紅霉素對(duì)香煙刺激的人巨噬細(xì)胞炎癥介質(zhì)的影響[D];廣西醫(yī)科大學(xué);2010年
8 葉金善;環(huán)氧化酶-2/前列腺素E_2在血管緊張素Ⅱ刺激巨噬細(xì)胞表達(dá)細(xì)胞外基質(zhì)金屬蛋白酶誘導(dǎo)因子中的作用[D];第三軍醫(yī)大學(xué);2010年
9 閆坤;前列腺素E1對(duì)小鼠子宮巨噬細(xì)胞表型和功能活性的影響[D];河南師范大學(xué);2011年
10 汪韶君;扇貝裙邊糖胺聚糖對(duì)巨噬細(xì)胞脂蛋白代謝及脂蛋白受體表達(dá)的影響研究[D];青島大學(xué);2006年
本文編號(hào):2116024
本文鏈接:http://sikaile.net/yixuelunwen/mjlw/2116024.html