計(jì)算機(jī)輔助鋼琴調(diào)律方法研究
本文選題:鋼琴 + 調(diào)律; 參考:《遼寧大學(xué)》2017年碩士論文
【摘要】:現(xiàn)在,幾乎所有領(lǐng)域都需要計(jì)算機(jī)技術(shù)的支持,音樂(lè)因運(yùn)用計(jì)算機(jī)技術(shù)也取得很多成就。近年來(lái)計(jì)算機(jī)普遍運(yùn)用于樂(lè)器聲音調(diào)整。然而所有研究成果和軟件都是支持音高調(diào)律的。一些鋼琴生產(chǎn)家存在檢查樂(lè)器的聲音是否標(biāo)準(zhǔn)、悅耳,響度是否夠大、夠清晰、持續(xù)時(shí)間是否夠長(zhǎng)等需求,從而提出對(duì)鋼琴結(jié)構(gòu)、物料選擇的調(diào)整方法,最終使鋼琴聲音最好聽(tīng)、最標(biāo)準(zhǔn)。然而現(xiàn)在的軟件不能滿足這些要求,所以鋼琴聲音特征調(diào)律的研究(如音色、音強(qiáng)、音長(zhǎng)等)對(duì)于生產(chǎn)廠家具有重要意義,也能幫助普通用戶檢測(cè)鋼琴聲音是否標(biāo)準(zhǔn)。首先本文介紹了計(jì)算機(jī)音樂(lè)的發(fā)展歷史。在部分上介紹了國(guó)內(nèi)外鋼琴調(diào)律研究和軟件開(kāi)發(fā)狀況,以及具體樂(lè)器調(diào)律以及鋼琴調(diào)律的工作原理。在主體內(nèi)容,首先說(shuō)到了音高調(diào)律,這部分介紹了基本的聲波知識(shí),接著說(shuō)明頻率、間距、人類感知、音高和頻率的關(guān)系以及基本頻率。進(jìn)一步介紹了音高以及一些生理和物理特征對(duì)音高的影響。鑒于目前關(guān)于音高提取的研究比較完善,且現(xiàn)在也有很多比較好的鋼琴調(diào)律軟件,所以本文只探討了現(xiàn)有提取音高的算法,并且通過(guò)實(shí)驗(yàn)選擇最適合實(shí)現(xiàn)鋼琴音高調(diào)律的算法。其次是對(duì)音色調(diào)律輔助的研究。這部分主要介紹音色的定義、特征以及音色特征與頻率的關(guān)系。通過(guò)相關(guān)研究,讓讀者深入了解譜圖。論文提出了兩個(gè)支持音色調(diào)律的方法,分別是音色識(shí)別和音色比較,同時(shí)探討了這兩種方法的優(yōu)缺點(diǎn)。音色識(shí)別方法使用音色特征樣本來(lái)識(shí)別要調(diào)律的聲音,關(guān)于此方法本文介紹了一些音色識(shí)別的算法。關(guān)于音色比較,本文提出了新方法,即運(yùn)用模糊數(shù)學(xué)貼近度來(lái)比較兩個(gè)音色頻譜圖,可以比較同一段時(shí)間內(nèi)的兩個(gè)頻譜圖的頻帶。運(yùn)用模糊數(shù)學(xué)貼近度方法來(lái)比較音色譜圖我們能夠獲得正確、詳細(xì)的結(jié)果,且音色不受樣本數(shù)量限制。最后是支持音強(qiáng)、音長(zhǎng)的調(diào)律方法。本節(jié)從介紹音強(qiáng)、音長(zhǎng)及其相關(guān)理論入手,并研究了計(jì)算音強(qiáng)與音長(zhǎng)的方法。為了比較兩個(gè)鋼琴聲音響度,我們不能直接用音強(qiáng)測(cè)量值來(lái)比較而是應(yīng)用在過(guò)程中音強(qiáng)變化度來(lái)比較的,因?yàn)橐魪?qiáng)受空間距離和環(huán)境的影響很大。這部分本文提出用模糊數(shù)學(xué)貼近度來(lái)比較兩個(gè)聲音音強(qiáng)變化過(guò)程,根據(jù)5個(gè)模糊貼近度算法,對(duì)聲音音強(qiáng)變化形態(tài)的6個(gè)案例進(jìn)行了實(shí)驗(yàn),找出最適用于音強(qiáng)比較的方法是最大最小貼近度。關(guān)于音長(zhǎng),本文就簡(jiǎn)單比較了兩個(gè)聲音的播放時(shí)間。
[Abstract]:Nowadays, almost all fields need the support of computer technology, and music has made a lot of achievements in the use of computer technology. In recent years, computers have been widely used in the sound adjustment of musical instruments. However, all research results and software support pitch. Some piano producers have the need to check whether the sound of the instrument is standard, pleasing to the ear, loud enough, clear enough, and long enough to last, so as to put forward a method of adjusting the structure of the piano and the choice of materials. Finally make the piano sound the best listening, the most standard. However, the current software can not meet these requirements, so the research of piano sound characteristic tuning (such as tone color, tone intensity, tone length and so on) is of great significance to manufacturers and can help ordinary users to detect whether piano sound is standard or not. First of all, this paper introduces the history of computer music. In part, it introduces the research and software development of piano tuning at home and abroad, as well as the working principle of musical instrument and piano modulation. In the main content, the first part is the pitch rhythm, which introduces the basic knowledge of sound waves, and then explains the frequency, distance, human perception, the relationship between pitch and frequency, and the basic frequency. The effects of pitch and some physiological and physical characteristics on pitch are further introduced. In view of the fact that the research on pitch extraction is relatively perfect, and there are many good piano tuning software, this paper only discusses the existing pitch extraction algorithms, and selects the most suitable algorithm for the piano pitch regulation through experiments. The second is the research of timbre and rhythm. This part mainly introduces the definition of timbre, characteristics and the relationship between timbre and frequency. Through the related research, let the reader deeply understand the spectrum chart. In this paper, we propose two methods to support timbre modulation, namely, timbre recognition and timbre comparison. At the same time, we discuss the advantages and disadvantages of these two methods. The timbre recognition method uses timbre feature samples to recognize the sound to be adjusted. This paper introduces some algorithms of timbre recognition. On the comparison of timbre, a new method is proposed in this paper, which is to compare two timbre spectrum maps by using fuzzy mathematical closeness, and to compare the frequency bands of two spectrum charts in the same period of time. Using the method of fuzzy mathematical closeness to compare the timbre spectrum we can obtain correct and detailed results and the timbre is not limited by the number of samples. Finally, it is to support the tone strong, the tone length of the tone method. This section begins with the introduction of tone intensity, pitch length and its related theories, and studies the method of calculating sound intensity and pitch length. In order to compare the sound acoustics of two pianos, we can't compare the sound intensity directly with the sound intensity measurement value, but apply the change degree of the sound intensity in the process, because the sound intensity is greatly affected by the space distance and the environment. In this part, we propose to compare the two sound intensity variation processes with fuzzy mathematical closeness. According to five fuzzy closeness degree algorithms, 6 cases of sound intensity change patterns are tested. The most suitable method for sound intensity comparison is maximum and minimum closeness. With regard to sound length, this paper briefly compares the playing time of two sounds.
【學(xué)位授予單位】:遼寧大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:J624.1;TP391.7
【參考文獻(xiàn)】
相關(guān)期刊論文 前3條
1 吳希希;;論音高、音長(zhǎng)、音強(qiáng)、音色與情態(tài)體驗(yàn)的聯(lián)覺(jué)對(duì)應(yīng)關(guān)系——以德彪西的鋼琴作品《水中倒影》為例[J];淮南師范學(xué)院學(xué)報(bào);2012年06期
2 程伊兵;;電子樂(lè)器調(diào)律初探[J];演藝設(shè)備與科技;2008年06期
3 劉法貴;趙娟;;模糊貼近度及應(yīng)用[J];華北水利水電學(xué)院學(xué)報(bào);2006年03期
相關(guān)博士學(xué)位論文 前1條
1 郭奕;自動(dòng)音樂(lè)標(biāo)注系統(tǒng)多基頻估計(jì)方法研究[D];電子科技大學(xué);2013年
相關(guān)碩士學(xué)位論文 前8條
1 趙子萱;不同觸鍵方式下鋼琴聲音頻譜研究[D];中國(guó)音樂(lè)學(xué)院;2016年
2 王琪;西洋樂(lè)器的音色識(shí)別[D];山東大學(xué);2015年
3 呂超;基于聲音時(shí)頻譜圖像特征的兩層分類方法[D];福州大學(xué);2013年
4 張琨磊;基于語(yǔ)音增強(qiáng)的基頻提取算法在語(yǔ)音識(shí)別上的應(yīng)用研究[D];中國(guó)科學(xué)技術(shù)大學(xué);2011年
5 龍麗婧;西洋樂(lè)器的音色特征值提取與研究[D];上海師范大學(xué);2011年
6 王禮超;樂(lè)音音色感知的行為和腦電研究[D];電子科技大學(xué);2011年
7 劉林;自動(dòng)音樂(lè)識(shí)譜系統(tǒng)中的音符檢測(cè)與流派分類[D];電子科技大學(xué);2008年
8 蘇江峰;鋼琴調(diào)音軟件的設(shè)計(jì)[D];西安電子科技大學(xué);2008年
,本文編號(hào):1981920
本文鏈接:http://sikaile.net/wenyilunwen/yinlelunwen/1981920.html