基于局部二進(jìn)制模式的樂(lè)譜譜線檢測(cè)與刪除
發(fā)布時(shí)間:2018-04-23 23:10
本文選題:譜線檢測(cè)與刪除 + 光學(xué)樂(lè)譜識(shí)別; 參考:《計(jì)算機(jī)科學(xué)與探索》2017年12期
【摘要】:譜線檢測(cè)與刪除是光學(xué)樂(lè)譜識(shí)別中重要和關(guān)鍵的環(huán)節(jié)之一。在樂(lè)譜中,譜線往往與大多數(shù)符號(hào)交叉或重疊,即存在像素屬于譜線像素同時(shí)也屬于符號(hào)像素的情況,因此刪除譜線并且不破壞音樂(lè)符號(hào)并非易事。研究目標(biāo)是需要?jiǎng)h除僅僅屬于譜線的像素,觀察樂(lè)譜圖像可以發(fā)現(xiàn)譜線像素與非譜線像素局部紋理存在差異,主要表現(xiàn)為譜線像素的局部紋理與譜線寬度相關(guān),簡(jiǎn)潔明了,而非譜線像素的局部紋理除了存在僅與自己本身相關(guān)的情況,還存在與交叉點(diǎn)相關(guān)的情況。因此,采用局部二進(jìn)制模式通過(guò)提取局部紋理特征,獲得譜線像素與非譜線像素局部紋理的差異,對(duì)譜線與非譜線像素進(jìn)行檢測(cè)分類,進(jìn)而將譜線像素刪除。該方法不僅可以刪除理想狀態(tài)下樂(lè)譜譜線,對(duì)彎曲狀態(tài)下樂(lè)譜譜線同樣適用。實(shí)驗(yàn)結(jié)果證明了該方法在像素誤差、片段誤差等性能指標(biāo)上優(yōu)于現(xiàn)有常用方法。
[Abstract]:Spectral line detection and deletion is one of the important and key links in optical music spectrum recognition. In music, spectral lines are often crossed or overlapped with most symbols, that is, pixels belong to spectral pixels as well as symbol pixels, so it is not easy to delete spectral lines without destroying music symbols. The goal of the study is to delete only the pixels belonging to the spectral lines. Observing the music spectrum images, we can find that there are differences in the local textures between the line pixels and the non-line pixels, which mainly show that the local textures of the line pixels are related to the spectral line width and are concise and clear. The local textures of non-spectral pixels are not only related to themselves, but also related to intersection points. Therefore, using local binary mode to extract local texture features, the difference between spectral line pixel and non-spectral line pixel is obtained, and the spectral line pixel is detected and classified, and then the spectral line pixel is deleted. This method can not only delete the music spectrum line in ideal state, but also apply to the music spectrum line in bending state. The experimental results show that the proposed method is superior to the existing methods in pixel error, segment error and other performance indexes.
【作者單位】: 天津大學(xué)電子信息工程學(xué)院;
【基金】:國(guó)家自然科學(xué)基金Nos.61101225,60802049,61471263 天津市自然科學(xué)基金No.16JCZDJC31100~~
【分類號(hào)】:J613.4;TP391.41
,
本文編號(hào):1794054
本文鏈接:http://sikaile.net/wenyilunwen/yinlelunwen/1794054.html
最近更新
教材專著