保溫裝飾復(fù)合墻板的耐候性試驗(yàn)及仿真
本文選題:耐候性 + 保溫層厚度 ; 參考:《湖南科技大學(xué)》2014年碩士論文
【摘要】:隨著建筑節(jié)能技術(shù)的逐步發(fā)展,新型保溫材料不斷涌現(xiàn)。本文針對近年來出現(xiàn)的一種新型保溫材料—保溫裝飾復(fù)合板,結(jié)合外墻外保溫技術(shù)規(guī)程,圍繞有關(guān)其耐候性的影響因素展開,主要研究內(nèi)容如下: 1.進(jìn)行了耐候性條件下粘結(jié)砂漿的抗折強(qiáng)度和質(zhì)量試驗(yàn),經(jīng)研究得出,養(yǎng)護(hù)期間的水分侵蝕會嚴(yán)重影響粘結(jié)砂漿抗折強(qiáng)度的發(fā)展,,使用過程中凍熱循環(huán)對其抗折強(qiáng)度的不利影響要遠(yuǎn)大于熱濕循環(huán)。當(dāng)粘結(jié)砂漿的抗折強(qiáng)度充分發(fā)展前受到凍熱循環(huán)時,其質(zhì)量會急劇減小。 2.通過ANSYS軟件模擬分析了外保溫系統(tǒng)保溫層厚度分別為20mm、30mm、40mm時,在高溫-淋水循環(huán)和加熱-冷凍循環(huán)下保溫層內(nèi)表面溫度場分布情況和特殊節(jié)點(diǎn)溫度變化的規(guī)律,粘結(jié)砂漿內(nèi)外表面和外飾面溫度應(yīng)力的分布情況以及外飾面的位移分布情況,研究得出: (1)保溫層厚度相同時(不論外保溫系統(tǒng)處于高溫還是低溫情況下):保溫層內(nèi)表面的溫度場及粘結(jié)砂漿層的溫度應(yīng)力,遠(yuǎn)離窗口的墻體部位,各節(jié)點(diǎn)處處相同;窗口部位,沿著洞口四邊以等勢線的形式逐漸變化;外飾面上產(chǎn)生的最大位移在窗口右側(cè),溫度應(yīng)力則在窗角處最大,遠(yuǎn)離窗口處各節(jié)點(diǎn)的溫度應(yīng)力和位移相差很小。 (2)保溫層厚度越大,保溫隔熱效果越好,室內(nèi)墻面的溫度波動越小,且粘結(jié)砂漿的溫度應(yīng)力減小,但外飾面上洞口對溫度應(yīng)力和位移的影響范圍則變大。 (3)高溫-淋雨循環(huán)和加熱-冷凍循環(huán)下粘結(jié)砂漿層的溫度應(yīng)力和外飾面的溫度應(yīng)力及位移分布相似。外保溫系統(tǒng)出現(xiàn)最大溫度應(yīng)力的時刻:在高溫-淋雨循環(huán)時為第10800秒,在加熱-冷凍循環(huán)的冷凍階段,則位于冷凍結(jié)束時刻。 3.以夏熱冬冷地區(qū)的長沙為例,對冬季時外保溫系統(tǒng)的內(nèi)部冷凝進(jìn)行了檢驗(yàn)。通過計算發(fā)現(xiàn):保溫層厚度的變化不會引起外保溫系統(tǒng)內(nèi)部冷凝結(jié)露的發(fā)生。 由本文的試驗(yàn)研究可以得出:夏熱冬冷地區(qū)(以湖南為例)外保溫施工的最佳季節(jié)是早秋。綜合保溫性、粘結(jié)砂漿的溫度應(yīng)力分析以及經(jīng)濟(jì)性考慮,外保溫系統(tǒng)選用40mm厚度的保溫裝飾復(fù)合板較為適宜。
[Abstract]:With the gradual development of building energy-saving technology, new thermal insulation materials are emerging. In this paper, according to a new type of thermal insulation material-thermal insulation decorative composite board, combined with the external wall insulation technical specification, around the influence factors of its weathering resistance, the main research contents are as follows: 1. The flexural strength and quality of bonded mortar under weathering condition were tested. It was concluded that water erosion during curing would seriously affect the development of flexural strength of bonded mortar. The adverse effect of freezing heat cycle on its flexural strength is much greater than that of heat and moisture cycle. When the flexural strength of the bonded mortar is fully developed, the mass of the mortar decreases rapidly when it is subjected to freezing and heat cycling. 2. The distribution of temperature field on the inner surface of the insulation layer and the variation of the temperature of the special node were analyzed by ANSYS software when the thickness of the insulation layer was 20mm or 30mm or 40mm, respectively, under the high-temperature water-leaching cycle and the heating-freezing cycle. The distribution of the temperature stress and the displacement distribution of the inner and outer surface of bonded mortar are studied. 1) when the thickness of the insulation layer is the same (whether the external insulation system is in high or low temperature): the temperature field on the inner surface of the insulation layer and the temperature stress of the bonded mortar layer are far away from the wall part of the window, and the nodes are everywhere the same; the window part, The maximum displacement on the exterior surface is on the right side of the window, and the temperature stress is the largest at the corner of the window, and the difference of the temperature stress and displacement between the nodes far away from the window is very small. 2) the greater the thickness of insulation layer, the better the thermal insulation effect, the smaller the temperature fluctuation of indoor wall, and the smaller the temperature stress of bonded mortar, but the larger the influence range of the opening on temperature stress and displacement is. 3) the temperature stress of bonded mortar under high temperature-rain cycle and heating-freezing cycle is similar to the distribution of temperature stress and displacement of external surface. The time of maximum temperature stress in the external thermal insulation system is 10800 seconds in the high temperature-rain cycle and at the end of the freezing stage in the heating-freezing cycle. 3. Taking Changsha in hot summer and cold winter as an example, the internal condensation of external thermal insulation system in winter was tested. It is found by calculation that the change of the thickness of insulation layer will not cause condensation and condensation in the external insulation system. From the experimental study in this paper, it can be concluded that the best season of external insulation construction in hot summer and cold winter area (Hunan as an example) is early autumn. The thermal insulation composite plate with the thickness of 40mm is suitable for the external insulation system, the thermal stress analysis of the bonded mortar and the economic considerations are taken into account.
【學(xué)位授予單位】:湖南科技大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2014
【分類號】:TU551
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 金潔;胡健;余恒鵬;;建筑外墻外保溫系統(tǒng)薄抹面層抗開裂性能研究[J];四川建筑科學(xué)研究;2011年06期
2 付毅剛;瞿浩榮;;聚氨酯保溫裝飾一體板防火施工技術(shù)的應(yīng)用[J];常州工學(xué)院學(xué)報;2012年01期
3 陳立;;外墻保溫裝飾一體化板的應(yīng)用與施工[J];福建建材;2010年06期
4 郭猛;;淺談中國建筑節(jié)能發(fā)展趨勢[J];建筑節(jié)能;2013年01期
5 宋波;張思思;王新民;;中外建筑外墻保溫標(biāo)準(zhǔn)比對研究[J];建筑節(jié)能;2012年09期
6 高春青;;聚氨酯硬泡保溫裝飾一體化系統(tǒng):防火性能達(dá)A級[J];城市住宅;2011年Z1期
7 楊沛;;淺析外墻外保溫和裝飾系統(tǒng)(EIFS)的應(yīng)用[J];科技經(jīng)濟(jì)市場;2011年05期
8 任普亮;曹慧;田立奇;;地震災(zāi)害對陜西省建筑節(jié)能工程的影響及分析[J];建設(shè)科技;2008年18期
9 丁建國;;多遇地震作用下外墻外保溫系統(tǒng)的地震作用分析[J];南京理工大學(xué)學(xué)報;2012年04期
10 邢貞輝;李來根;李代輝;朱劍飛;;外墻面保溫裝飾一體化系統(tǒng)施工質(zhì)量控制[J];江蘇建筑;2012年06期
相關(guān)博士學(xué)位論文 前1條
1 薄海濤;建筑外墻外保溫系統(tǒng)耐久性及評價研究[D];華中科技大學(xué);2009年
本文編號:1824913
本文鏈接:http://sikaile.net/wenyilunwen/shinazhuanghuangshejilunwen/1824913.html