scikit-learn python_zouxy09的專欄
本文關(guān)鍵詞:scikit-learn,由筆耕文化傳播整理發(fā)布。
Python機(jī)器學(xué)習(xí)庫scikit-learn實(shí)踐
zouxy09@qq.com
一、概述
機(jī)器學(xué)習(xí)算法在近幾年大數(shù)據(jù)點(diǎn)燃的熱火熏陶下已經(jīng)變得被人所“熟知”,就算不懂得其中各算法理論,叫你喊上一兩個(gè)著名算法的名字,你也能昂首挺胸脫口而出。當(dāng)然了,算法之林雖大,但能者還是有限,能適應(yīng)某些環(huán)境并取得較好效果的算法會(huì)脫穎而出,而表現(xiàn)平平者則被歷史所淡忘。隨著機(jī)器學(xué)習(xí)社區(qū)的發(fā)展和實(shí)踐驗(yàn)證,這群脫穎而出者也逐漸被人所認(rèn)可和青睞,同時(shí)獲得了更多社區(qū)力量的支持、改進(jìn)和推廣。
以最廣泛的分類算法為例,大致可以分為線性和非線性兩大派別。線性算法有著名的邏輯回歸、樸素貝葉斯、最大熵等,非線性算法有隨機(jī)森林、決策樹、神經(jīng)網(wǎng)絡(luò)、核機(jī)器等等。線性算法舉的大旗是訓(xùn)練和預(yù)測的效率比較高,但最終效果對特征的依賴程度較高,需要數(shù)據(jù)在特征層面上是線性可分的。因此,使用線性算法需要在特征工程上下不少功夫,盡量對特征進(jìn)行選擇、變換或者組合等使得特征具有區(qū)分性。而非線性算法則牛逼點(diǎn),可以建模復(fù)雜的分類面,從而能更好的擬合數(shù)據(jù)。
那在我們選擇了特征的基礎(chǔ)上,哪個(gè)機(jī)器學(xué)習(xí)算法能取得更好的效果呢?誰也不知道。實(shí)踐是檢驗(yàn)?zāi)膫(gè)好的不二標(biāo)準(zhǔn)。那難道要苦逼到寫五六個(gè)機(jī)器學(xué)習(xí)的代碼嗎?No,機(jī)器學(xué)習(xí)社區(qū)的力量是強(qiáng)大的,碼農(nóng)界的共識(shí)是不重復(fù)造輪子!因此,對某些較為成熟的算法,總有某些優(yōu)秀的庫可以直接使用,省去了大伙調(diào)研的大部分時(shí)間。
基于目前使用python較多,而python界中遠(yuǎn)近聞名的機(jī)器學(xué)習(xí)庫要數(shù)scikit-learn莫屬了。這個(gè)庫優(yōu)點(diǎn)很多。簡單易用,接口抽象得非常好,而且文檔支持實(shí)在感人。本文中,我們可以封裝其中的很多機(jī)器學(xué)習(xí)算法,然后進(jìn)行一次性測試,從而便于分析取優(yōu)。當(dāng)然了,針對具體算法,超參調(diào)優(yōu)也非常重要。
二、scikit-learn的python實(shí)踐
2.1、Python的準(zhǔn)備工作
Python一個(gè)備受歡迎的點(diǎn)是社區(qū)支持很多,有非常多優(yōu)秀的庫或者模塊。但是某些庫之間有時(shí)候也存在依賴,所以要安裝這些庫也是挺繁瑣的過程。但總有人忍受不了這種繁瑣,都會(huì)開發(fā)出不少自動(dòng)化的工具來節(jié)省各位客官的時(shí)間。其中,個(gè)人總結(jié),安裝一個(gè)python的庫有以下三種方法:
1)Anaconda
這是一個(gè)非常齊全的python發(fā)行版本,最新的版本提供了多達(dá)195個(gè)流行的python包,包含了我們常用的numpy、scipy等等科學(xué)計(jì)算的包。有了它,媽媽再也不用擔(dān)心我焦頭爛額地安裝一個(gè)又一個(gè)依賴包了。Anaconda在手,輕松我有!下載地址如下:
2)Pip
使用過Ubuntu的人,對apt-get的愛只有自己懂。其實(shí)對Python的庫的下載和安裝可以借助pip工具的。需要安裝什么庫,直接下載和安裝一條龍服務(wù)。在pip官網(wǎng)https://pypi.python.org/pypi/pip下載安裝即可。未來的需求就在#pip install xx 中。
3)源碼包
如果上述兩種方法都沒有找到你的庫,那你直接把庫的源碼下載回來,解壓,然后在目錄中會(huì)有個(gè)setup.py文件。執(zhí)行#python setup.py install 即可把這個(gè)庫安裝到python的默認(rèn)庫目錄中。
2.2、scikit-learn的測試
scikit-learn已經(jīng)包含在Anaconda中。也可以在官方下載源碼包進(jìn)行安裝。本文代碼里封裝了如下機(jī)器學(xué)習(xí)算法,我們修改數(shù)據(jù)加載函數(shù),即可一鍵測試:
classifiers = {'NB':naive_bayes_classifier, 'KNN':knn_classifier, 'LR':logistic_regression_classifier, 'RF':random_forest_classifier, 'DT':decision_tree_classifier, 'SVM':svm_classifier, 'SVMCV':svm_cross_validation, 'GBDT':gradient_boosting_classifier }
train_test.py
#!usr/bin/env python
#-*- coding: utf-8 -*-
import sys
import os
import time
from sklearn import metrics
import numpy as np
import cPickle as pickle
reload(sys)
sys.setdefaultencoding('utf8')
# Multinomial Naive Bayes Classifier
def naive_bayes_classifier(train_x, train_y):
from sklearn.naive_bayes import MultinomialNB
model = MultinomialNB(alpha=0.01)
model.fit(train_x, train_y)
return model
# KNN Classifier
def knn_classifier(train_x, train_y):
from sklearn.neighbors import KNeighborsClassifier
model = KNeighborsClassifier()
model.fit(train_x, train_y)
return model
# Logistic Regression Classifier
def logistic_regression_classifier(train_x, train_y):
from sklearn.linear_model import LogisticRegression
model = LogisticRegression(penalty='l2')
model.fit(train_x, train_y)
return model
# Random Forest Classifier
def random_forest_classifier(train_x, train_y):
from sklearn.ensemble import RandomForestClassifier
model = RandomForestClassifier(n_estimators=8)
model.fit(train_x, train_y)
return model
# Decision Tree Classifier
def decision_tree_classifier(train_x, train_y):
from sklearn import tree
model = tree.DecisionTreeClassifier()
model.fit(train_x, train_y)
return model
# GBDT(Gradient Boosting Decision Tree) Classifier
def gradient_boosting_classifier(train_x, train_y):
from sklearn.ensemble import GradientBoostingClassifier
model = GradientBoostingClassifier(n_estimators=200)
model.fit(train_x, train_y)
return model
# SVM Classifier
def svm_classifier(train_x, train_y):
from sklearn.svm import SVC
model = SVC(kernel='rbf', probability=True)
model.fit(train_x, train_y)
return model
# SVM Classifier using cross validation
def svm_cross_validation(train_x, train_y):
from sklearn.grid_search import GridSearchCV
from sklearn.svm import SVC
model = SVC(kernel='rbf', probability=True)
param_grid = {'C': [1e-3, 1e-2, 1e-1, 1, 10, 100, 1000], 'gamma': [0.001, 0.0001]}
grid_search = GridSearchCV(model, param_grid, n_jobs = 1, verbose=1)
grid_search.fit(train_x, train_y)
best_parameters = grid_search.best_estimator_.get_params()
for para, val in best_parameters.items():
print para, val
model = SVC(kernel='rbf', C=best_parameters['C'], gamma=best_parameters['gamma'], probability=True)
model.fit(train_x, train_y)
return model
def read_data(data_file):
import gzip
f = gzip.open(data_file, "rb")
train, val, test = pickle.load(f)
f.close()
train_x = train[0]
train_y = train[1]
test_x = test[0]
test_y = test[1]
return train_x, train_y, test_x, test_y
if __name__ == '__main__':
data_file = "mnist.pkl.gz"
thresh = 0.5
model_save_file = None
model_save = {}
test_classifiers = ['NB', 'KNN', 'LR', 'RF', 'DT', 'SVM', 'GBDT']
classifiers = {'NB':naive_bayes_classifier,
'KNN':knn_classifier,
'LR':logistic_regression_classifier,
'RF':random_forest_classifier,
'DT':decision_tree_classifier,
'SVM':svm_classifier,
'SVMCV':svm_cross_validation,
'GBDT':gradient_boosting_classifier
}
print 'reading training and testing data...'
train_x, train_y, test_x, test_y = read_data(data_file)
num_train, num_feat = train_x.shape
num_test, num_feat = test_x.shape
is_binary_class = (len(np.unique(train_y)) == 2)
print '******************** Data Info *********************'
print '#training data: %d, #testing_data: %d, dimension: %d' % (num_train, num_test, num_feat)
for classifier in test_classifiers:
print '******************* %s ********************' % classifier
start_time = time.time()
model = classifiers[classifier](train_x, train_y)
print 'training took %fs!' % (time.time() - start_time)
predict = model.predict(test_x)
if model_save_file != None:
model_save[classifier] = model
if is_binary_class:
precision = metrics.precision_score(test_y, predict)
recall = metrics.recall_score(test_y, predict)
print 'precision: %.2f%%, recall: %.2f%%' % (100 * precision, 100 * recall)
accuracy = metrics.accuracy_score(test_y, predict)
print 'accuracy: %.2f%%' % (100 * accuracy)
if model_save_file != None:
pickle.dump(model_save, open(model_save_file, 'wb'))
四、測試結(jié)果
本次使用mnist手寫體庫進(jìn)行實(shí)驗(yàn):。共5萬訓(xùn)練樣本和1萬測試樣本。
代碼運(yùn)行結(jié)果如下:
reading training and testing data...
******************** Data Info *********************
#training data: 50000, #testing_data: 10000, dimension: 784
******************* NB ********************
training took 0.287000s!
accuracy: 83.69%
******************* KNN ********************
training took 31.991000s!
accuracy: 96.64%
******************* LR ********************
training took 101.282000s!
accuracy: 91.99%
******************* RF ********************
training took 5.442000s!
accuracy: 93.78%
******************* DT ********************
training took 28.326000s!
accuracy: 87.23%
******************* SVM ********************
training took 3152.369000s!
accuracy: 94.35%
******************* GBDT ********************
training took 7623.761000s!
accuracy: 96.18%
在這個(gè)數(shù)據(jù)集中,由于數(shù)據(jù)分布的團(tuán)簇性較好(如果對這個(gè)數(shù)據(jù)庫了解的話,看它的t-SNE映射圖就可以看出來。由于任務(wù)簡單,其在deep learning界已被認(rèn)為是toy dataset),因此KNN的效果不賴。GBDT是個(gè)非常不錯(cuò)的算法,,在kaggle等大數(shù)據(jù)比賽中,狀元探花榜眼之列經(jīng)常能見其身影。三個(gè)臭皮匠賽過諸葛亮,還是被驗(yàn)證有道理的,特別是三個(gè)臭皮匠還能力互補(bǔ)的時(shí)候!
還有一個(gè)在實(shí)際中非常有效的方法,就是融合這些分類器,再進(jìn)行決策。例如簡單的投票,效果都非常不錯(cuò)。建議在實(shí)踐中,大家都可以嘗試下。
本文關(guān)鍵詞:scikit-learn,由筆耕文化傳播整理發(fā)布。
本文編號(hào):116388
本文鏈接:http://sikaile.net/wenshubaike/kaixinbaike/116388.html