天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

基于BP神經(jīng)網(wǎng)絡(luò)的贛南臍橙價(jià)格預(yù)測(cè)研究

發(fā)布時(shí)間:2018-04-08 21:36

  本文選題:贛南臍橙 切入點(diǎn):BP神經(jīng)網(wǎng)絡(luò) 出處:《華中農(nóng)業(yè)大學(xué)》2017年碩士論文


【摘要】:贛南臍橙是我國(guó)重要的柑橘類水果,2015年,贛南臍橙在農(nóng)產(chǎn)品公共區(qū)域品牌價(jià)值排行榜位列第一,為提高贛南地區(qū)旅游品牌知名度,帶動(dòng)贛南蘇區(qū)人民脫貧致富,促進(jìn)柑橘產(chǎn)業(yè)轉(zhuǎn)型升級(jí)發(fā)揮了重要作用。截止到2016年,贛南臍橙種植規(guī)模逾160萬(wàn)畝,產(chǎn)業(yè)產(chǎn)值接近100億元,種植、加工、銷(xiāo)售規(guī)模逐漸增加,贛南臍橙在水果市場(chǎng)中的消費(fèi)量逐年提高,市場(chǎng)規(guī)模逐漸擴(kuò)大,然而,贛南臍橙價(jià)格波動(dòng)劇烈,短期波幅大等,易導(dǎo)致出現(xiàn)“橙貴傷民”,“橙賤傷農(nóng)”兩種極端情況。贛南臍橙價(jià)格的穩(wěn)定,關(guān)系著生產(chǎn)者、加工者、銷(xiāo)售者以及普通消費(fèi)者收益及生活的穩(wěn)定。對(duì)贛南臍橙價(jià)格波動(dòng)進(jìn)行預(yù)測(cè)研究,不僅有利于市場(chǎng)政策、銷(xiāo)售策略的制定,對(duì)于保證產(chǎn)地生產(chǎn)、農(nóng)戶收入穩(wěn)定具有十分重要的意義。本文依據(jù)價(jià)格形成理論,根據(jù)2007年-2017年贛南臍橙月度價(jià)格數(shù)據(jù),以及2016年11月-2017年2月日度價(jià)格數(shù)據(jù),分析其波動(dòng)特征及影響因素等。基于BP神經(jīng)網(wǎng)絡(luò),進(jìn)行贛南臍橙價(jià)格預(yù)測(cè)研究,并比較分析BP神經(jīng)網(wǎng)絡(luò)與ARIMA模型的預(yù)測(cè)精度,根據(jù)預(yù)測(cè)結(jié)果,分析贛南臍橙價(jià)格走勢(shì),并使用MATLAB軟件進(jìn)行實(shí)證分析。因此,本文研究?jī)?nèi)容與結(jié)論如下:(1)探究贛南臍橙產(chǎn)業(yè)發(fā)展現(xiàn)狀及價(jià)格變化;從價(jià)格波動(dòng)、產(chǎn)業(yè)結(jié)構(gòu)、市場(chǎng)推廣等方面分析了贛南臍橙產(chǎn)業(yè)面臨的問(wèn)題;從市場(chǎng)因素、自然因素、人為因素三方面探討影響贛南臍橙價(jià)格的主要因素。(2)預(yù)測(cè)贛南臍橙價(jià)格變化。根據(jù)贛南臍橙價(jià)格特征,確定適合的隱含層節(jié)點(diǎn)數(shù),搭建基于L-M改進(jìn)算法的BP神經(jīng)網(wǎng)絡(luò)價(jià)格預(yù)測(cè)模型。研究發(fā)現(xiàn),BP神經(jīng)網(wǎng)絡(luò)的預(yù)測(cè)結(jié)果誤差較低,月度價(jià)格預(yù)測(cè)相對(duì)誤差在2.5%左右。通過(guò)與ARIMA模型預(yù)測(cè)結(jié)果的對(duì)比,在日度價(jià)格預(yù)測(cè)上,BP神經(jīng)網(wǎng)絡(luò)預(yù)測(cè)相對(duì)誤差為1.5%,低于ARIMA模型2%的相對(duì)誤差。(3)針對(duì)贛南臍橙價(jià)格波動(dòng)提供促進(jìn)其價(jià)格平穩(wěn)發(fā)展的對(duì)策�;趦r(jià)格預(yù)測(cè)結(jié)果及波動(dòng)原因,本文認(rèn)為贛南地區(qū)應(yīng)完善信息建設(shè),加強(qiáng)贛南臍橙價(jià)格波動(dòng)的預(yù)警研究,并提高規(guī)模化經(jīng)營(yíng)程度,降低生產(chǎn)成本,以此提高價(jià)格波動(dòng)風(fēng)險(xiǎn)的應(yīng)變能力。本文創(chuàng)新點(diǎn)主要有:(1)在研究?jī)?nèi)容上,采取最新的贛南臍橙價(jià)格數(shù)據(jù),減少了時(shí)間跨度過(guò)長(zhǎng)帶來(lái)的影響;此外,目前學(xué)術(shù)界關(guān)于水果與柑橘的價(jià)格預(yù)測(cè)研究較多,而關(guān)于贛南臍橙價(jià)格預(yù)測(cè)的研究較少。本文將近年來(lái)發(fā)展較為迅速的智能預(yù)測(cè)方法具體的應(yīng)用到贛南臍橙價(jià)格預(yù)測(cè)領(lǐng)域,不同于以往的定性分析。(2)在預(yù)測(cè)方法的選取上,比較基于L-M改進(jìn)算法的BP神經(jīng)網(wǎng)絡(luò)與標(biāo)準(zhǔn)BP網(wǎng)絡(luò)的優(yōu)度,以及BP神經(jīng)網(wǎng)絡(luò)與ARIMA預(yù)測(cè)模型的預(yù)測(cè)精度,選取合適的預(yù)測(cè)模型,避免模型單一化。
[Abstract]:Gannan navel orange is an important citrus fruit in our country. In 2015, Gannan navel orange ranked first in the list of brand value of agricultural products in public area. In order to improve the popularity of tourism brand in Gannan area and promote the people of Gannan Su District to get rid of poverty and become rich,Promoting citrus industry transformation and upgrading has played an important role.Up to 2016, the scale of navel orange planting in Gannan is over 1.6 million mu, and the industrial output value is close to 10 billion yuan. The scale of planting, processing and selling is gradually increasing. The consumption of navel orange in Gannan is increasing year by year, and the market scale is gradually expanding, however,The price fluctuation of navel orange in Gannan is violent, and the short term fluctuation is large, which may lead to two extreme conditions: "orange is expensive to injure people" and "orange is cheap to hurt agriculture".The stability of navel orange price in Gannan is related to the income and life of producers, processors, sellers and ordinary consumers.To predict the price fluctuation of navel orange in Gannan is not only beneficial to the formulation of market policy and sales strategy, but also of great significance to ensure the production of producing area and the stable income of farmers.Based on the price formation theory, the monthly price data of Gannan navel orange from 2007 to 2017 and the daily price data from November 2016 to February 2017, the fluctuation characteristics and influencing factors are analyzed.Based on BP neural network, the price prediction of navel orange in Gannan is studied, and the prediction accuracy of BP neural network and ARIMA model is compared. According to the forecast results, the price trend of navel orange in south Jiangxi is analyzed, and the empirical analysis is carried out with MATLAB software.Therefore, the contents and conclusions of this paper are as follows: (1) to explore the present situation and price change of the navel orange industry in Gannan; to analyze the problems faced by the navel orange industry in Gannan from the aspects of price fluctuation, industrial structure and market promotion; to analyze the market factors, natural factors, and so on;The main factors influencing the price of Gannan navel orange were discussed from three aspects of human factors. (2) to predict the price change of navel orange in south Jiangxi.According to the price characteristics of navel orange in Gannan, the suitable number of hidden layer nodes is determined, and the BP neural network price prediction model based on L-M improved algorithm is built.It is found that the prediction error of BP neural network is low and the relative error of monthly price prediction is about 2.5%.By comparing with the prediction results of ARIMA model, the relative error of BP neural network in daily price prediction is 1.5, which is less than 2% of ARIMA model.Based on the result of price forecast and the reason of fluctuation, this paper thinks that the information construction should be perfected, the early warning study of price fluctuation of navel orange should be strengthened, the degree of large-scale operation should be improved, and the production cost should be reduced.In order to improve the risk of price fluctuations in response to the ability.The main innovation of this paper is: (1) in the research content, we adopt the latest price data of navel orange in Gannan to reduce the influence of long time span. In addition, there are more researches on the price prediction of fruits and oranges in academic circles at present.However, there is little research on the price prediction of navel orange in Gannan.In this paper, the intelligent forecasting method, which has been developed rapidly in recent years, has been applied to the price prediction of navel orange in south Jiangxi, which is different from the qualitative analysis in the past.The advantages of BP neural network based on L-M improved algorithm and standard BP neural network, as well as the prediction accuracy of BP neural network and ARIMA prediction model are compared. The suitable prediction model is selected to avoid the simplification of the model.
【學(xué)位授予單位】:華中農(nóng)業(yè)大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TP183;F323.7

【參考文獻(xiàn)】

相關(guān)期刊論文 前10條

1 王寶海;丁慧媛;;基于ARIMA模型的我國(guó)大宗農(nóng)產(chǎn)品價(jià)格指數(shù)預(yù)測(cè)[J];數(shù)學(xué)的實(shí)踐與認(rèn)識(shí);2016年21期

2 馬佳;馬瑩;趙京音;;都市綠葉蔬菜價(jià)格預(yù)測(cè)預(yù)警研究的思考[J];中國(guó)農(nóng)學(xué)通報(bào);2016年30期

3 雙巧云;羅省根;;新常態(tài)下促進(jìn)江西柑桔產(chǎn)業(yè)優(yōu)化升級(jí)的思考[J];現(xiàn)代園藝;2015年23期

4 曹霜;何玉成;;基于小波分解的SVM-ARIMA農(nóng)產(chǎn)品價(jià)格預(yù)測(cè)模型[J];統(tǒng)計(jì)與決策;2015年13期

5 熊巍;祁春節(jié);高瑜;楊春;;基于組合模型的農(nóng)產(chǎn)品市場(chǎng)價(jià)格短期預(yù)測(cè)研究——以紅富士蘋(píng)果、香蕉、橙為例[J];農(nóng)業(yè)技術(shù)經(jīng)濟(jì);2015年06期

6 盧占軍;鐘八蓮;郭慧;;贛南臍橙產(chǎn)業(yè)可持續(xù)發(fā)展的探討[J];企業(yè)經(jīng)濟(jì);2015年04期

7 陳亞艷;羅新祜;;贛南臍橙出口特點(diǎn)及競(jìng)爭(zhēng)力影響因素實(shí)證分析[J];中國(guó)南方果樹(shù);2015年01期

8 溫濤;王小華;;貨幣政策對(duì)中國(guó)農(nóng)產(chǎn)品價(jià)格波動(dòng)的沖擊效應(yīng)研究[J];當(dāng)代經(jīng)濟(jì)科學(xué);2014年06期

9 付蓮蓮;鄧群釗;;農(nóng)產(chǎn)品價(jià)格波動(dòng)影響因素的通徑分析——基于2000年~2013年月度數(shù)據(jù)[J];經(jīng)濟(jì)經(jīng)緯;2014年06期

10 胡煒童;霍學(xué)喜;;我國(guó)水果價(jià)格波動(dòng)規(guī)律及傳導(dǎo)路徑研究[J];價(jià)格理論與實(shí)踐;2014年08期

相關(guān)碩士學(xué)位論文 前10條

1 牛志娟;基于人工神經(jīng)網(wǎng)絡(luò)預(yù)測(cè)與分類的應(yīng)用研究[D];中北大學(xué);2016年

2 李誠(chéng);農(nóng)產(chǎn)品價(jià)格預(yù)測(cè)研究[D];湖南農(nóng)業(yè)大學(xué);2014年

3 許杞剛;基于改進(jìn)KNN-BPNN算法的山東省農(nóng)產(chǎn)品價(jià)格預(yù)測(cè)模型[D];濟(jì)南大學(xué);2014年

4 崔利國(guó);基于混沌神經(jīng)網(wǎng)絡(luò)模型的我國(guó)蔬菜價(jià)格短期預(yù)測(cè)研究[D];中國(guó)農(nóng)業(yè)科學(xué)院;2013年

5 任偉宏;基于人工神經(jīng)網(wǎng)絡(luò)的水果價(jià)格短期預(yù)測(cè)研究[D];中國(guó)農(nóng)業(yè)科學(xué)院;2012年

6 劉天舒;BP神經(jīng)網(wǎng)絡(luò)的改進(jìn)研究及應(yīng)用[D];東北農(nóng)業(yè)大學(xué);2011年

7 賀艷輝;基于BP人工神經(jīng)網(wǎng)絡(luò)水產(chǎn)品價(jià)格預(yù)測(cè)的研究[D];南京農(nóng)業(yè)大學(xué);2009年

8 龔平;人工神經(jīng)網(wǎng)絡(luò)在房地產(chǎn)價(jià)格預(yù)測(cè)中的應(yīng)用研究[D];江南大學(xué);2009年

9 郭超;農(nóng)產(chǎn)品價(jià)格數(shù)據(jù)挖掘與趨勢(shì)預(yù)測(cè)模型的研究[D];山東大學(xué);2009年

10 吳璇;中國(guó)糧食價(jià)格預(yù)警系統(tǒng)研究[D];中國(guó)農(nóng)業(yè)大學(xué);2003年

,

本文編號(hào):1723436

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/weiguanjingjilunwen/1723436.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶4c66a***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com
国产精品一区二区丝袜| 日本av在线不卡一区| 国产精品白丝一区二区| 在线观看免费无遮挡大尺度视频 | 国产精品免费无遮挡不卡视频| 久草视频在线视频在线观看| 亚洲欧美一二区日韩高清在线| 不卡中文字幕在线免费看| 九九久久精品久久久精品| 日韩中文无线码在线视频| 亚洲成人黄色一级大片| 国产综合欧美日韩在线精品| 国产亚洲精品久久99| 日韩毛片视频免费观看| 中文久久乱码一区二区| 青青操在线视频精品视频| 我想看亚洲一级黄色录像| 国产无摭挡又爽又色又刺激| 国产成人午夜福利片片| 香蕉久久夜色精品国产尤物| 亚洲综合香蕉在线视频| 日韩午夜福利高清在线观看| 国产精品美女午夜视频| 亚洲一区二区精品久久av| 欧美av人人妻av人人爽蜜桃| 欧美大胆女人的大胆人体| 国产精品亚洲欧美一区麻豆 | 午夜福利在线观看免费| 五月综合激情婷婷丁香| 国产精品免费无遮挡不卡视频| 超薄丝袜足一区二区三区| 欧美一级特黄大片做受大屁股 | 国产欧美日韩精品自拍| 风间中文字幕亚洲一区| 国产精品久久男人的天堂| 欧美三级精品在线观看| 国产精品伦一区二区三区四季 | 精品视频一区二区不卡| 日韩一本不卡在线观看| 太香蕉久久国产精品视频| 久久精品国产亚洲av麻豆尤物 |