天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

茶葉中啶蟲脒農(nóng)藥的納米生物傳感器檢測方法研究

發(fā)布時間:2018-05-05 08:52

  本文選題:茶葉 + 農(nóng)藥殘留; 參考:《江蘇大學(xué)》2017年碩士論文


【摘要】:茶葉享譽中外,是我國重要的農(nóng)業(yè)經(jīng)濟代表作物,也是聞名遐邇的出口商品。然而,農(nóng)藥普遍施用,尤其是以啶蟲脒(Acetamiprid,Ace)為代表的新型、高效農(nóng)藥,它們能有效防治蟲害,殘留量卻引人憂思。常規(guī)的農(nóng)殘檢測或適用局限,費時費力,或處理復(fù)雜,儀器昂貴,均不適用現(xiàn)場快速檢測。核酸適配體合成成本低、識別特異性高;納米材料響應(yīng)靈敏、檢測準(zhǔn)確,研究將兩者結(jié)合,克服常規(guī)檢測的局限性,以啶蟲脒為例,實現(xiàn)茶葉中農(nóng)藥殘留快速靈敏檢測。具體內(nèi)容如下:1.上轉(zhuǎn)換熒光納米生物傳感器對茶葉中啶蟲脒的定量檢測。在此,以上轉(zhuǎn)換熒光納米顆粒(Upconversion Nanoparticles,UCNPs)作供體,金納米粒子(Gold Nanoparticles,GNPs)作受體,以靜電作用使熒光共振能量轉(zhuǎn)移體系(Fluorescence Resonance Energy Transfer,FRET)得以構(gòu)建,并猝滅UCNPs的熒光。核酸適配體能夠吸附到GNPs表面,維護GNPs在鹽溶液中的穩(wěn)定性;而當(dāng)Ace存在時,核酸適配體能與其發(fā)生特異性結(jié)合并不再吸附到GNPs表面,GNPs因鹽效應(yīng)發(fā)生聚集,削弱FRET,UCNPs熒光恢復(fù)。在最優(yōu)條件下,Ace于50 nM-1000 nM濃度區(qū)間與熒光比率成線性相關(guān),檢出限為3.2 nM;同時,對實際茶葉樣本以標(biāo)準(zhǔn)加入法進行加標(biāo)回收,所得結(jié)果準(zhǔn)確可靠。該傳感器以近紅外作為激發(fā)光源,因此能夠避免復(fù)雜樣本的背景干擾,顯示其在茶葉農(nóng)藥殘留檢測中的應(yīng)用前景。2.表面增強拉曼納米生物傳感器對茶葉中啶蟲脒的定量檢測。在此,核酸適配體穩(wěn)定GNPs在鹽溶液的分散狀態(tài);拉曼活性結(jié)晶紫染料(Crystal Violet,CV)報告增強信號。當(dāng)Ace存在時,核酸適配體能與其發(fā)生特異性結(jié)合并不再吸附到CV-GNPs表面,CV-GNPs因鹽效應(yīng)發(fā)生聚集,粒子間距減小,使得SERS信號借助粒子之間加強的表面等離激元耦合效應(yīng)而顯著增強,并在此以明顯的CV特征峰作為標(biāo)記峰進行測定。在最優(yōu)條件下,Ace于30 nM-4000 nM濃度區(qū)間與拉曼強度差值成線性相關(guān),檢出限為17.6 nM;同時,對實際茶葉樣本以標(biāo)準(zhǔn)加入法進行加標(biāo)回收,所得結(jié)果準(zhǔn)確可靠。該傳感器以拉曼光譜作為檢測曲線,操作簡單測量方便,因此有望作為應(yīng)用于茶葉中農(nóng)藥殘留現(xiàn)場快速檢測的候選方法。3.金比色納米生物傳感器對茶葉中啶蟲脒的定量檢測。在此,以核酸適配體作為Ace的識別元件,半胱胺鹽酸鹽修飾的金納米粒子(Cysteamine-Gold Nanoparticles,CS-GNPs)作為比色指示劑。帶負電的核酸適配體可以引起帶正電的CS-GNPs的團聚,使CS-GNPs吸光值下降;而當(dāng)Ace存在時,核酸適配體會優(yōu)先與其發(fā)生特異性結(jié)合并形成復(fù)合物,不再誘導(dǎo)CS-GNPs團聚,使吸光值得到恢復(fù)。在最優(yōu)條件下,Ace于10-40 nM濃度區(qū)間與吸收差值成線性相關(guān),檢出限為0.72 nM;同時,對實際茶葉樣本以標(biāo)準(zhǔn)加入法進行加標(biāo)回收,所得結(jié)果準(zhǔn)確可靠。因此,該傳感器在痕量范圍檢測表現(xiàn)出的超靈敏性可為茶葉農(nóng)藥殘留的高精度檢測提供借鑒。
[Abstract]:Tea is famous both at home and abroad, is the important agricultural economy representative crop, is also the famous export commodity. However, pesticides are widely used, especially new and efficient pesticides, such as Acetamiprid Aceas, which can effectively control insect pests, but their residues are worrying. Because of the limitation, time consuming, complicated processing and expensive instrument, the conventional detection is not suitable for rapid field detection. The synthesis of aptamer of nucleic acid has low cost and high recognition specificity. The nanomaterials are sensitive in response and accurate in detection. In order to overcome the limitations of conventional detection, the rapid and sensitive detection of pesticide residues in tea was realized by combining the two methods and taking acetamidine as an example. The details are as follows: 1. Quantitative determination of acetamiprid in tea by up-conversion fluorescent nanosensor. In this paper, the fluorescence resonance Resonance Energy transfer system (fluorescence Resonance Energy transfer system) was constructed by using gold nanoparticles (Gold Nanoparticles-GNPs) as the acceptor. The fluorescence resonance Resonance Energy transfer system was constructed, and the fluorescence of UCNPs was quenched. Nucleic acid aptamers can adsorb to the surface of GNPs to maintain the stability of GNPs in salt solution, but when Ace exists, nucleic acid adaptor can bind specifically to GNPs surface and no longer adsorb to GNPs surface, which weakens fluorescence recovery of GNPs due to salt effect. Under the optimal conditions, the fluorescence ratio was linearly correlated with the concentration range of 50 nM-1000 NM, and the detection limit was 3.2 nm. At the same time, the standard addition method was used to recover the actual tea samples, and the results were accurate and reliable. The sensor uses near infrared as the excitation light source, so it can avoid the background interference of complex samples and show the application prospect of the sensor in the detection of pesticide residues in tea. Surface enhanced Raman nanosensor for quantitative determination of acetamiprid in tea. The nucleic acid aptamer stabilizes the dispersion of GNPs in salt solution and the Raman active crystal violet dye Crystal Violet GNPs reports enhanced signal. In the presence of Ace, nucleic acid adaptations can bind specifically to CV-GNPs and no longer adsorb to the surface of CV-GNPs because of the aggregation of CV-GNPs due to the salt effect and the decrease of particle spacing, which makes the SERS signal significantly enhanced by the enhancement of the surface isophosphate coupling effect between the particles. The obvious CV characteristic peak was used as the marker peak. Under the optimal conditions, the concentration range of Ace at 30 nM-4000 nm was linearly correlated with the Raman intensity difference, the detection limit was 17.6 nm, and the standard addition method was used to recover the actual tea samples, and the results were accurate and reliable. The sensor takes Raman spectrum as the detection curve and is easy to operate, so it is expected to be used as a candidate method for rapid detection of pesticide residues in tea. Quantitative determination of acetamiprid in tea by gold colorimetric nano biosensor. Nucleic acid aptamer was used as the recognition element of Ace, and cysteamine-Gold Nanoparticles-CS-GNPs, modified by cysteamine-gold, was used as the colorimetric indicator. A negatively charged aptamer of nucleic acid can cause the aggregation of positively charged CS-GNPs and decrease the absorptivity of CS-GNPs, but when Ace exists, the aptamer of nucleic acid preferentially binds to it and forms a complex, which no longer induces the aggregation of CS-GNPs. Restore the absorptive value. Under the optimum conditions, the concentration range of Ace at 10-40 nm was linearly correlated with the absorption difference, and the detection limit was 0.72 nm. At the same time, the standard addition method was used to recover the actual tea samples, and the results were accurate and reliable. Therefore, the hypersensitivity of the sensor in trace detection range can be used for reference in high precision detection of pesticide residues in tea.
【學(xué)位授予單位】:江蘇大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:S481.8;TP212.3

【參考文獻】

相關(guān)期刊論文 前10條

1 鄭澤華;;農(nóng)藥殘留標(biāo)準(zhǔn)對中國茶葉出口的影響研究[J];世界農(nóng)業(yè);2013年08期

2 肖琛;李培武;唐章林;張奇;張文;;氰戊菊酯殘留膠體金免疫層析試紙條研制[J];化學(xué)試劑;2011年08期

3 陳菁菁;彭彥昆;李永玉;王偉;吳建虎;單佳佳;;基于高光譜熒光技術(shù)的葉菜農(nóng)藥殘留快速檢測[J];農(nóng)業(yè)工程學(xué)報;2010年S2期

4 錢玉琴;陳巧;董秀云;董青華;;農(nóng)藥殘留降解技術(shù)研究現(xiàn)狀與展望[J];質(zhì)量技術(shù)監(jiān)督研究;2010年06期

5 馮潔;湯樺;陳大舟;汪瑾彥;王覃;趙新穎;李蕾;;茶葉中農(nóng)藥殘留的分析方法研究[J];現(xiàn)代儀器;2010年04期

6 顏鴻飛;黃志強;張瑩;李擁軍;王美玲;;氣相色譜-質(zhì)譜法測定茶葉中29種酸性除草劑的殘留量[J];色譜;2009年03期

7 韓婷;陳紅兵;;免疫分析技術(shù)在食品農(nóng)殘藥殘檢測方面的應(yīng)用[J];江西食品工業(yè);2008年03期

8 干寧;王峰;楊欣;李天華;王軍;;采用納米修飾雙酶電極生物傳感器檢測有機膦與氨基甲酸酯類農(nóng)藥[J];農(nóng)藥學(xué)學(xué)報;2008年03期

9 郭建輝;蔡恩興;施通華;張奇泓;;啶蟲脒在菜用大豆上殘留動態(tài)及安全使用技術(shù)[J];農(nóng)藥;2008年09期

10 符展明;符超;;農(nóng)藥殘留檢測技術(shù)的現(xiàn)狀及進展[J];中國衛(wèi)生檢驗雜志;2008年08期

相關(guān)博士學(xué)位論文 前1條

1 李永波;高效液相色譜電化學(xué)發(fā)光傳感器新技術(shù)及氣質(zhì)聯(lián)用方法研究和應(yīng)用[D];陜西師范大學(xué);2013年

相關(guān)碩士學(xué)位論文 前10條

1 肖穎;液相色譜—串聯(lián)質(zhì)譜聯(lián)用技術(shù)在食品安全分析中的應(yīng)用[D];西南大學(xué);2013年

2 蘇婷;茶葉中啶蟲脒殘留檢測方法及消解動態(tài)研究[D];安徽農(nóng)業(yè)大學(xué);2012年

3 許鶴;基于熒光光譜技術(shù)的農(nóng)藥殘留檢測方法的研究[D];長春理工大學(xué);2012年

4 唐慧容;銀溶膠表面增強拉曼光譜(SERS)定性和定量分析農(nóng)藥殘留的方法研究[D];華東理工大學(xué);2012年

5 蔡陳杰;茶園中有機氯農(nóng)藥殘留檢測技術(shù)及應(yīng)用研究[D];南京農(nóng)業(yè)大學(xué);2011年

6 劉濤;水果表面農(nóng)藥殘留快速檢測方法及模型研究[D];華東交通大學(xué);2011年

7 王曉;基于高光譜圖像及近紅外光譜技術(shù)的水果表面農(nóng)藥殘留的無損檢測研究[D];江西農(nóng)業(yè)大學(xué);2011年

8 房立;敵草隆免疫膠體金快速檢測試紙條的開發(fā)[D];天津科技大學(xué);2010年

9 劉瑩;有機磷農(nóng)藥的膠體金免疫層析快速檢測試紙條的研制[D];上海師范大學(xué);2009年

10 閔紅;蔬菜類食品中農(nóng)藥殘留的快速檢測方法和儀器的研究[D];華東師范大學(xué);2008年

,

本文編號:1847042

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/shoufeilunwen/zaizhiyanjiusheng/1847042.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶772fc***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com
国产精品午夜性色视频| 中文字幕一区二区免费| 久久99精品日韩人妻| 国产福利在线播放麻豆| 精品午夜福利无人区乱码| 日本美国三级黄色aa| 亚洲综合色婷婷七月丁香| 日本在线不卡高清欧美| 国产又黄又爽又粗视频在线| 国产日韩精品欧美综合区| 91麻豆视频国产一区二区| 日韩高清中文字幕亚洲| 字幕日本欧美一区二区| 国产精品日韩精品最新| 亚洲国产婷婷六月丁香| 蜜臀人妻一区二区三区| 亚洲一区二区三区有码| 国产男女激情在线视频| 亚洲一区精品二人人爽久久 | 欧洲一级片一区二区三区| 亚洲妇女作爱一区二区三区| 亚洲国产丝袜一区二区三区四| 蜜桃传媒视频麻豆第一区| 福利在线午夜绝顶三级| 久久人人爽人人爽大片av| 东京热男人的天堂久久综合| 亚洲高清欧美中文字幕| 中文字幕在线区中文色| 欧美日韩亚洲国产综合网 | 91亚洲国产日韩在线| 日本成人三级在线播放| 中文字幕免费观看亚洲视频| 成人精品视频在线观看不卡| 亚洲国产精品久久精品成人| 日韩欧美一区二区久久婷婷 | 日本女优一区二区三区免费| 精品人妻一区二区三区四在线| 国产一区日韩二区欧美| 玩弄人妻少妇一区二区桃花| 精品丝袜一区二区三区性色| 欧美成人免费视频午夜色|