Joint-Carrier Phase Tracking Techniques for Coherent Optical
發(fā)布時(shí)間:2022-01-04 20:24
為了克服電子器件的速率瓶頸,以低成本的方式滿(mǎn)足光通信系統(tǒng)容量指數(shù)增長(zhǎng)的需求,人們引入了基于光并行的超信道來(lái)提高波分復(fù)用(WDM)系統(tǒng)的頻譜效率!俺诺馈敝傅氖菍⒁唤M共同產(chǎn)生、共同傳輸和共同檢測(cè)的信道作為一個(gè)單一的實(shí)體。超信道可以通過(guò)使用頻分復(fù)用(FDM)、空分復(fù)用(SDM)或者FDM和SDM的組合(即混合超信道)來(lái)實(shí)現(xiàn)。同時(shí),偏振復(fù)用(PDM)還可以使每個(gè)信道的容量獲得加倍。超信道的產(chǎn)生,既可以使用獨(dú)立光源,也可以使用光梳光源。當(dāng)使用光頻梳來(lái)實(shí)現(xiàn)頻域波分復(fù)用超信道傳輸時(shí),因?yàn)楣馐岙a(chǎn)生的信道頻率是穩(wěn)定的,并以一種相關(guān)的方式漂移,因此各波分復(fù)用信道可以被緊密地排列,只需要信道間保留一個(gè)更小的保護(hù)頻帶,甚至不需要保護(hù)頻帶。當(dāng)大量獨(dú)立的激光源被一個(gè)單一的光梳光源代替后,除了可以有效降低硬件復(fù)雜度和功耗外,還可以大幅提升光譜效率外。不過(guò)由于光梳光源同樣存在激光器相位噪聲,以及光纖非線(xiàn)性的影響,基于光頻梳光源的超同樣需要對(duì)載波相位進(jìn)行準(zhǔn)確估計(jì)和補(bǔ)償。其中,平均長(zhǎng)度是載波相位估計(jì)的一個(gè)重要參數(shù),需要通過(guò)自適應(yīng)優(yōu)化以提高性能。此外,在光通信系統(tǒng)中,支持DSP功能的數(shù)字相干接收機(jī)的日益普及,提高了對(duì)降...
【文章來(lái)源】:電子科技大學(xué)四川省 211工程院校 985工程院校 教育部直屬院校
【文章頁(yè)數(shù)】:150 頁(yè)
【學(xué)位級(jí)別】:博士
【文章目錄】:
摘要
ABSTRACT
Chapter 1 Introduction
1.1 Research Background and Significance
1.2 State of Arts
1.3 Contents and Innovations of the Thesis
1.4 Outline of the Thesis
Chapter 2 Theoretical Basics of Coherent Optical Fiber Communication Systems
2.1 Historical Evolution of Fiber Transport Networks for Optical CommunicationSystems
2.2 Principles of Coherent Optical Fiber Communication System
2.2.1 Transmitter
2.2.2 Fiber Transmission Links
2.2.3 Receiver
2.3 Transceiver DSP Algorithms
2.3.1 Channel Equalization
2.3.2 Carrier Phase Recovery Algorithms for Single-Carrier and OFDMsystems
2.4 Conclusion
Chapter 3 Adaptive Joint-Polarization Carrier Phase Estimation in the Presence ofNonlinear Phase Noise
3.1 Introduction
3.2 Adaptive Average Length Optimization
3.3 Adaptive Carrier Phase Tracking Through Elimination of Large Phase NoiseComponents
3.4 Performance Evaluation of Proposed Adaptive Joint-Polarization Carrier PhaseTracking Techniques
3.4.1 System Set-up for Simulation
3.4.2 Performance Evaluation:Laser Linewidth Effects
3.4.3 Performance Evaluation:Nonlinear Phase Noise Effects
3.5 Conclusion
Chapter 4 Joint-Channel Carrier Phase Tracking Techniques
4.1 Introduction
4.2 Origin, Characterization and Effects of Inter-Channel Differential Phase onJoint-Channel Carrier Phase tracking Performance
4.3 Design of Master-Slave Carrier Phase Tracking Technique
4.4 Performance Evaluation of Designed Master-Slave Carrier Phase TrackingTechnique
4.4.1 System Set-up for Simulation
4.4.2 Performance Evaluation:Laser Linewidth Effects under LinearDispersive Transmission
4.4.3 Performance Evaluation:Nonlinear Phase Noise Effects
4.5 Computational Complexity Comparison between Master Phase Estimator andSlave Phase-Tracker
4.6 Low Overhead Carrier Phase Noise Estimation for Coherent Multi-band OFDMSystems Enabled by Optical Frequency Combs
4.6.1 Design of Master-Slave Carrier Phase Tracking Technique forComb-based OFDM Systems
4.6.2 Performance Evaluation:Laser Linewidth and Nonlinear Phase NoiseEffects
4.7 Conclusion
Chapter 5 Experimental Results
5.1 Introduction
5.2 Experiment Set-up
5.3 Characteristics of Phase noise
5.4 Performance evaluation
5.5 Conclusion
Chapter 6 Conclusions
6.1 Concluding Remarks
6.2 Future Work
Acknowledgements
References
Research Results Obtained During the Study for PhD Degree
Other publications by the author but not included in this thesis
本文編號(hào):3569004
【文章來(lái)源】:電子科技大學(xué)四川省 211工程院校 985工程院校 教育部直屬院校
【文章頁(yè)數(shù)】:150 頁(yè)
【學(xué)位級(jí)別】:博士
【文章目錄】:
摘要
ABSTRACT
Chapter 1 Introduction
1.1 Research Background and Significance
1.2 State of Arts
1.3 Contents and Innovations of the Thesis
1.4 Outline of the Thesis
Chapter 2 Theoretical Basics of Coherent Optical Fiber Communication Systems
2.1 Historical Evolution of Fiber Transport Networks for Optical CommunicationSystems
2.2 Principles of Coherent Optical Fiber Communication System
2.2.1 Transmitter
2.2.2 Fiber Transmission Links
2.2.3 Receiver
2.3 Transceiver DSP Algorithms
2.3.1 Channel Equalization
2.3.2 Carrier Phase Recovery Algorithms for Single-Carrier and OFDMsystems
2.4 Conclusion
Chapter 3 Adaptive Joint-Polarization Carrier Phase Estimation in the Presence ofNonlinear Phase Noise
3.1 Introduction
3.2 Adaptive Average Length Optimization
3.3 Adaptive Carrier Phase Tracking Through Elimination of Large Phase NoiseComponents
3.4 Performance Evaluation of Proposed Adaptive Joint-Polarization Carrier PhaseTracking Techniques
3.4.1 System Set-up for Simulation
3.4.2 Performance Evaluation:Laser Linewidth Effects
3.4.3 Performance Evaluation:Nonlinear Phase Noise Effects
3.5 Conclusion
Chapter 4 Joint-Channel Carrier Phase Tracking Techniques
4.1 Introduction
4.2 Origin, Characterization and Effects of Inter-Channel Differential Phase onJoint-Channel Carrier Phase tracking Performance
4.3 Design of Master-Slave Carrier Phase Tracking Technique
4.4 Performance Evaluation of Designed Master-Slave Carrier Phase TrackingTechnique
4.4.1 System Set-up for Simulation
4.4.2 Performance Evaluation:Laser Linewidth Effects under LinearDispersive Transmission
4.4.3 Performance Evaluation:Nonlinear Phase Noise Effects
4.5 Computational Complexity Comparison between Master Phase Estimator andSlave Phase-Tracker
4.6 Low Overhead Carrier Phase Noise Estimation for Coherent Multi-band OFDMSystems Enabled by Optical Frequency Combs
4.6.1 Design of Master-Slave Carrier Phase Tracking Technique forComb-based OFDM Systems
4.6.2 Performance Evaluation:Laser Linewidth and Nonlinear Phase NoiseEffects
4.7 Conclusion
Chapter 5 Experimental Results
5.1 Introduction
5.2 Experiment Set-up
5.3 Characteristics of Phase noise
5.4 Performance evaluation
5.5 Conclusion
Chapter 6 Conclusions
6.1 Concluding Remarks
6.2 Future Work
Acknowledgements
References
Research Results Obtained During the Study for PhD Degree
Other publications by the author but not included in this thesis
本文編號(hào):3569004
本文鏈接:http://sikaile.net/shoufeilunwen/xxkjbs/3569004.html
最近更新
教材專(zhuān)著