智能醫(yī)療保健系統(tǒng)接入物聯(lián)網(wǎng)的安全方法
發(fā)布時(shí)間:2021-12-28 10:17
如今,由于信息通信的迅速形成,物聯(lián)網(wǎng)(Internet of Things,IoT)被認(rèn)為是一種令人振奮的事物,并被認(rèn)為可能是普適計(jì)算的一種闡釋。它通過(guò)直接的用戶(hù)沉浸將系統(tǒng)模型替換擴(kuò)展到不斷一致地協(xié)作使用的智能設(shè)備,例如傳感器和執(zhí)行器,而無(wú)需人工干預(yù)。此外,自動(dòng)化設(shè)備和計(jì)算專(zhuān)業(yè)知識(shí)被人們廣泛地接受也導(dǎo)致了物聯(lián)網(wǎng)的快速發(fā)展。物聯(lián)網(wǎng)最重要的概念是平臺(tái)的可訪問(wèn)性,該平臺(tái)可以通過(guò)舒適的方式提供設(shè)施或通信,并且不存在任何障礙,可以從最容易訪問(wèn)的站點(diǎn)進(jìn)行監(jiān)視和控制,而該站點(diǎn)上遍布世界各地的任何種類(lèi)事物。目前,許多智能物聯(lián)網(wǎng)應(yīng)用程序在智能應(yīng)用(例如,智能無(wú)線多媒體監(jiān)控網(wǎng)絡(luò)(SWMSN)、智能醫(yī)療系統(tǒng)、射頻識(shí)別標(biāo)簽(RFID)、智能城市、自動(dòng)駕駛車(chē)輛(SDV)、智能電網(wǎng)、汽車(chē)等)中都可作為內(nèi)置傳感器使用,無(wú)人機(jī)監(jiān)控系統(tǒng)(DSS)、智能家居設(shè)備、農(nóng)場(chǎng)動(dòng)物生物芯片遠(yuǎn)程監(jiān)控、智能健身鞋,智能工業(yè)監(jiān)控系統(tǒng)(SIMS)和智能交通系統(tǒng)(STS)等。高處理能力的發(fā)展源于智能物聯(lián)網(wǎng)生態(tài),它非常精通與周?chē)h(huán)境進(jìn)行有意義的智能交互。醫(yī)療保健系統(tǒng)與物聯(lián)網(wǎng)環(huán)境的集成廣泛一致,以便于通過(guò)現(xiàn)有疾病對(duì)患者進(jìn)行最佳的患者監(jiān)測(cè)、有效的...
【文章來(lái)源】:電子科技大學(xué)四川省 211工程院校 985工程院校 教育部直屬院校
【文章頁(yè)數(shù)】:134 頁(yè)
【學(xué)位級(jí)別】:博士
【文章目錄】:
摘要
ABSTRACT
Chapter 1 Introduction
1.1 Internet of Things (IoT)
1.2 Issues with IoT
1.3 Secure Surveillance on Smart Healthcare Model based on Io T
1.4 Issues in Secure Surveillance on Smart Healthcare Model
1.5 Extracted Keyframe Security on Smart Healthcare Model
1.6 Security Challenges in the Smart Healthcare Model based on Io T
1.7 Objectives
1.8 Contributions
1.9 Organization of Thesis
1.10 Summary
Chapter 2 Literature Survey
2.1 What is the Surveillance
2.2 Current Surveillance Approaches
2.3 Deep Learning and Neural Network
2.3.1 Feed Forward Neural Network
2.3.2 Multi-Layer Perceptron
2.4 Convolutional Neural Network
2.5 Neural Network Training Framework
2.6 Deep Neural Network Applications
2.7 What is YOLOv3 Algorithm
2.8 Integration of Secure Surveillance Approach with YOLOv3
2.9 Overview of Digital Images
2.10 Security of Digital Images
2.10.1 Cryptography
2.10.2 Data Encryption Algorithms
2.10.3 Digital Image Encryption
2.10.4 Image Encryption Evaluation Metrics
2.11 Chao Theory and Image Cryptography
2.12 Integration of Secure Surveillance and Image Cryptography
2.13 Usage of the Proposed Prototype System
2.14 Summary
Chapter 3 Surveillance on Smart Healthcare with Keyframe Encryption
3.1 Introduction
3.2 Secure Surveillance Mechanism
3.2.1 Keyframe Extraction Model from Visual Data
3.2.2 Probabilistic and Lightweight Keyframe Encryption Algorithms
3.3 Experimental Results and Discussion
3.4 Security Analysis
3.4.1 Assessment of the Speed Test
3.4.2 Information Entropy Analysis
3.4.3 Resistance to Differential Attack Analysis
3.4.4 Statistical Analysis
3.4.5 Key Analysis
3.4.6 Comparative Analysis with Existing Surveillance Scheme
3.5 Summary
Chapter 4 Cosine-transform Extracted Keyframe Encryption
4.1 Introduction
4.2 Lightweight Cosine-transform-based Keyframe Encryption Algorithms
4.2.1 Cosine-transform-based Chaotic Sequence (CCS)
4.2.2 Sine Tent Cosine Image Encryption System (STC-IES)
4.2.3 Key Structure
4.2.4 Lightweight STC-IES
4.3 Simulation Results and Discussions
4.4 Security Analysis
4.4.1 Computational Overhead and Speed Assessment
4.4.2 Information Entropy Analysis
4.4.3 Differential Attack Analysis
4.4.4 Histogram Analysis
4.4.5 Correlation Analysis
4.4.6 Key Analysis
4.4.7 Comparative Analysis among Surveillance System
4.5 Operational Enhancement in Sine Tent Cosine Image Encryption System(OESTC-IES)
4.5.1 Randomness Test Analysis of the Cipher Keyframe
4.5.2 Deviation Analysis
4.5.3 Chosen-Plaintext Attack
4.6 Summary
Chapter 5 Medical Image Encryption
5.1 Introduction
5.2 Proposed Medical Image Encryption
5.2.1 Key Structure
5.2.2 High Speed Scrambling
5.2.3 Pixel adaptive Diffusion
5.3 Results and Discussion
5.4 Security Analysis
5.4.1 Information Entropy Analysis
5.4.2 Differential Attacks
5.4.3 Statistical Analysis
5.4.4 Key Analysis
5.5 Summary
Chapter 6 Conclusion and Future Research Directions
6.1 Conclusion
6.2 Future Research Directions
Acknowledgement
References
Research Results Achieved During the Study for Doctoral Degree
本文編號(hào):3553881
【文章來(lái)源】:電子科技大學(xué)四川省 211工程院校 985工程院校 教育部直屬院校
【文章頁(yè)數(shù)】:134 頁(yè)
【學(xué)位級(jí)別】:博士
【文章目錄】:
摘要
ABSTRACT
Chapter 1 Introduction
1.1 Internet of Things (IoT)
1.2 Issues with IoT
1.3 Secure Surveillance on Smart Healthcare Model based on Io T
1.4 Issues in Secure Surveillance on Smart Healthcare Model
1.5 Extracted Keyframe Security on Smart Healthcare Model
1.6 Security Challenges in the Smart Healthcare Model based on Io T
1.7 Objectives
1.8 Contributions
1.9 Organization of Thesis
1.10 Summary
Chapter 2 Literature Survey
2.1 What is the Surveillance
2.2 Current Surveillance Approaches
2.3 Deep Learning and Neural Network
2.3.1 Feed Forward Neural Network
2.3.2 Multi-Layer Perceptron
2.4 Convolutional Neural Network
2.5 Neural Network Training Framework
2.6 Deep Neural Network Applications
2.7 What is YOLOv3 Algorithm
2.8 Integration of Secure Surveillance Approach with YOLOv3
2.9 Overview of Digital Images
2.10 Security of Digital Images
2.10.1 Cryptography
2.10.2 Data Encryption Algorithms
2.10.3 Digital Image Encryption
2.10.4 Image Encryption Evaluation Metrics
2.11 Chao Theory and Image Cryptography
2.12 Integration of Secure Surveillance and Image Cryptography
2.13 Usage of the Proposed Prototype System
2.14 Summary
Chapter 3 Surveillance on Smart Healthcare with Keyframe Encryption
3.1 Introduction
3.2 Secure Surveillance Mechanism
3.2.1 Keyframe Extraction Model from Visual Data
3.2.2 Probabilistic and Lightweight Keyframe Encryption Algorithms
3.3 Experimental Results and Discussion
3.4 Security Analysis
3.4.1 Assessment of the Speed Test
3.4.2 Information Entropy Analysis
3.4.3 Resistance to Differential Attack Analysis
3.4.4 Statistical Analysis
3.4.5 Key Analysis
3.4.6 Comparative Analysis with Existing Surveillance Scheme
3.5 Summary
Chapter 4 Cosine-transform Extracted Keyframe Encryption
4.1 Introduction
4.2 Lightweight Cosine-transform-based Keyframe Encryption Algorithms
4.2.1 Cosine-transform-based Chaotic Sequence (CCS)
4.2.2 Sine Tent Cosine Image Encryption System (STC-IES)
4.2.3 Key Structure
4.2.4 Lightweight STC-IES
4.3 Simulation Results and Discussions
4.4 Security Analysis
4.4.1 Computational Overhead and Speed Assessment
4.4.2 Information Entropy Analysis
4.4.3 Differential Attack Analysis
4.4.4 Histogram Analysis
4.4.5 Correlation Analysis
4.4.6 Key Analysis
4.4.7 Comparative Analysis among Surveillance System
4.5 Operational Enhancement in Sine Tent Cosine Image Encryption System(OESTC-IES)
4.5.1 Randomness Test Analysis of the Cipher Keyframe
4.5.2 Deviation Analysis
4.5.3 Chosen-Plaintext Attack
4.6 Summary
Chapter 5 Medical Image Encryption
5.1 Introduction
5.2 Proposed Medical Image Encryption
5.2.1 Key Structure
5.2.2 High Speed Scrambling
5.2.3 Pixel adaptive Diffusion
5.3 Results and Discussion
5.4 Security Analysis
5.4.1 Information Entropy Analysis
5.4.2 Differential Attacks
5.4.3 Statistical Analysis
5.4.4 Key Analysis
5.5 Summary
Chapter 6 Conclusion and Future Research Directions
6.1 Conclusion
6.2 Future Research Directions
Acknowledgement
References
Research Results Achieved During the Study for Doctoral Degree
本文編號(hào):3553881
本文鏈接:http://sikaile.net/shoufeilunwen/xxkjbs/3553881.html
最近更新
教材專(zhuān)著