Investigation of Plasmonic Devices for Biosensing and Energy
發(fā)布時(shí)間:2021-09-22 04:16
如今,石化能源趨于枯竭,癌癥嚴(yán)重威脅著人類(lèi)的生命,開(kāi)發(fā)新能源和治愈癌癥成為人類(lèi)面臨的兩大迫切需要解決的問(wèn)題。太陽(yáng)輻射能取之不盡,用之不竭,是人類(lèi)理想的新能源,開(kāi)發(fā)太陽(yáng)能首先需要解決的問(wèn)題是,提高太陽(yáng)輻射能收集的效率,而目前的收集效率都不是太理想。治愈癌癥的首要問(wèn)題是要盡早發(fā)現(xiàn)癌癥細(xì)胞,越早診斷出癌細(xì)胞,治愈的幾率越大。因此,開(kāi)展以太陽(yáng)能利用為主要用途的能量收集和以腫瘤細(xì)胞高靈敏度探測(cè)為主要目的的生物傳感器研究具有重要的學(xué)術(shù)和應(yīng)用價(jià)值。利用有限元法,從理論上研究了不同器件的等離子體納米結(jié)構(gòu)和吸收體設(shè)計(jì)。獲得了高品質(zhì)因子和FoM值的多個(gè)Fano共振結(jié)構(gòu)。應(yīng)用對(duì)稱(chēng)破缺技術(shù)來(lái)激發(fā)多個(gè)高階暗模。在相對(duì)簡(jiǎn)單的結(jié)構(gòu)中實(shí)現(xiàn)了等離子體誘發(fā)抗透明(PIAT)和等離子體誘發(fā)透明(PIT)。機(jī)理上,這種減少對(duì)稱(chēng)性是通過(guò)引入兩個(gè)面對(duì)面的納米間隙和在相反方向上旋轉(zhuǎn)/移動(dòng)這兩個(gè)納米間隙來(lái)實(shí)現(xiàn)的。吸收器設(shè)計(jì)可用于實(shí)現(xiàn)基于高輸入電壓的可調(diào)諧和靈活的完美吸收;陔姽庖r底的吸收器非常靈敏,可以用來(lái)將諧振波長(zhǎng)移動(dòng)到所需的波段,而不改變光譜的線形。在輸入電壓變化高度敏感的寬波段,所設(shè)計(jì)的器件具有與入射角基本無(wú)關(guān)的吸收特性,可...
【文章來(lái)源】:深圳大學(xué)廣東省
【文章頁(yè)數(shù)】:94 頁(yè)
【學(xué)位級(jí)別】:博士
【文章目錄】:
摘要
Abstract
Chapter 1 Prolegomenon
1.1 Introduction
1.2 Methodology
Chapter 2 Overview on Metamaterial Absorbers and Fano Resonances for Biosensing and Basis of Theoretical Methods
2.1 Plasmonic Metamaterials
2.2 Metamaterial Absorbers
2.3 Tri-Layer Absorbers
2.3.1 Narrowband Absorbers
2.3.2 Broadband Absorbers
2.3.3 Selective Wavelengths Absorbers
2.3.4 Electro-optic Based Absorbers
2.4 Multilayer absorbers
2.5 Cascaded Cavities
2.6 Applications
2.6.1 Sensing
2.6.2 Energy Harvesting
2.7 Fano resonances for Biosensing
2.8 Problem Statement and Future Prospects
2.9 Theoretical Methods
2.9.1 General Theory of Fano Resonance
2.9.2 Scattering Parameters
2.9.3 Performance calculation formulae
2.10 Conclusive Remarks
Chapter 3 Plasmonic Spectral Splitting in ring/rod Metasurface
3.1 Introduction
3.2 Physical Module
3.3 Results and Discussion
3.4 Conclusive Remarks
Chapter 4 Sensitive Label-free Sensor with High Figure of Merit Based on Plasmonic Metasurface with Unit Cell of Double Two-split Nanorings
4.1 Introduction
4.2 Physical Design
4.3 Fano Resonances in the Structure
4.4 Refractive Index Sensitivity for a Sensor
4.5 Refractive Index Sensitivity for Biomedical Sensors
4.6 Conclusive Remarks
Chapter 5 Plasmon-induced Anti-transparency Modes in Metasurface
5.1 Introduction
5.2 Structure and Material Parameters
5.3 Results and Discussions
5.3.1 PIAT modes and PIT modes with the Metasurface
5.3.2 Influence of Resonator Thickness and Substrate Thickness
5.3.3 Application Example for Biosensing
5.4 Conclusive Remarks
Chapter 6 Highly Flexible and Voltage Based Wavelength Tunable Biosensor
6.1 Introduction
6.2 Physical Module and Design Parameters
6.3 Results and Discussion
6.3.1 Influence of cross number,rod length,rod space,and incident angle on the absorption spectrum
6.3.2 Influence of Voltage on Resonant Wavelengths
6.3.3 Influence of Lithium Niobate and Background Refractive Index on Resonant Wavelengths
6.4 Conclusive Remarks
Chapter 7 Plasmonic Metasurface Absorber Based on Electro-Optic Substrate for Energy Harvesting
7.1 Introduction
7.2 Physical Design
7.3 Results and Discussion
7.3.1 Basic Studies
7.3.2 Influence of Structural Parameters on the Absorption Spectra
7.4 Conclusive Remarks
Chapter 8.Summary
References
Acknowledgement
Awards and Publications During the PhD Study and Research
【參考文獻(xiàn)】:
期刊論文
[1]Tunable narrowband antireflection optical filter with a metasurface[J]. LUIGI BIBBò,KARIM KHAN,QIANG LIU,MI LIN,QIONG WANG,ZHENGBIAO OUYANG. Photonics Research. 2017(05)
本文編號(hào):3403120
【文章來(lái)源】:深圳大學(xué)廣東省
【文章頁(yè)數(shù)】:94 頁(yè)
【學(xué)位級(jí)別】:博士
【文章目錄】:
摘要
Abstract
Chapter 1 Prolegomenon
1.1 Introduction
1.2 Methodology
Chapter 2 Overview on Metamaterial Absorbers and Fano Resonances for Biosensing and Basis of Theoretical Methods
2.1 Plasmonic Metamaterials
2.2 Metamaterial Absorbers
2.3 Tri-Layer Absorbers
2.3.1 Narrowband Absorbers
2.3.2 Broadband Absorbers
2.3.3 Selective Wavelengths Absorbers
2.3.4 Electro-optic Based Absorbers
2.4 Multilayer absorbers
2.5 Cascaded Cavities
2.6 Applications
2.6.1 Sensing
2.6.2 Energy Harvesting
2.7 Fano resonances for Biosensing
2.8 Problem Statement and Future Prospects
2.9 Theoretical Methods
2.9.1 General Theory of Fano Resonance
2.9.2 Scattering Parameters
2.9.3 Performance calculation formulae
2.10 Conclusive Remarks
Chapter 3 Plasmonic Spectral Splitting in ring/rod Metasurface
3.1 Introduction
3.2 Physical Module
3.3 Results and Discussion
3.4 Conclusive Remarks
Chapter 4 Sensitive Label-free Sensor with High Figure of Merit Based on Plasmonic Metasurface with Unit Cell of Double Two-split Nanorings
4.1 Introduction
4.2 Physical Design
4.3 Fano Resonances in the Structure
4.4 Refractive Index Sensitivity for a Sensor
4.5 Refractive Index Sensitivity for Biomedical Sensors
4.6 Conclusive Remarks
Chapter 5 Plasmon-induced Anti-transparency Modes in Metasurface
5.1 Introduction
5.2 Structure and Material Parameters
5.3 Results and Discussions
5.3.1 PIAT modes and PIT modes with the Metasurface
5.3.2 Influence of Resonator Thickness and Substrate Thickness
5.3.3 Application Example for Biosensing
5.4 Conclusive Remarks
Chapter 6 Highly Flexible and Voltage Based Wavelength Tunable Biosensor
6.1 Introduction
6.2 Physical Module and Design Parameters
6.3 Results and Discussion
6.3.1 Influence of cross number,rod length,rod space,and incident angle on the absorption spectrum
6.3.2 Influence of Voltage on Resonant Wavelengths
6.3.3 Influence of Lithium Niobate and Background Refractive Index on Resonant Wavelengths
6.4 Conclusive Remarks
Chapter 7 Plasmonic Metasurface Absorber Based on Electro-Optic Substrate for Energy Harvesting
7.1 Introduction
7.2 Physical Design
7.3 Results and Discussion
7.3.1 Basic Studies
7.3.2 Influence of Structural Parameters on the Absorption Spectra
7.4 Conclusive Remarks
Chapter 8.Summary
References
Acknowledgement
Awards and Publications During the PhD Study and Research
【參考文獻(xiàn)】:
期刊論文
[1]Tunable narrowband antireflection optical filter with a metasurface[J]. LUIGI BIBBò,KARIM KHAN,QIANG LIU,MI LIN,QIONG WANG,ZHENGBIAO OUYANG. Photonics Research. 2017(05)
本文編號(hào):3403120
本文鏈接:http://sikaile.net/shoufeilunwen/xxkjbs/3403120.html
最近更新
教材專(zhuān)著