基于狀態(tài)估計的多方法融合的故障預測算法研究
[Abstract]:With the improvement of the safety and reliability requirements of the system performance, it is hoped that the information of the future development of the fault can be obtained when the system has only slight abnormal changes, so as to control the continuous development of the fault and further reduce the possibility of the accident. Compared with the traditional scheme maintenance system, the prediction and maintenance technology based on the fault prediction can improve the utilization rate of the equipment, thereby reducing the maintenance cost and the production cost. Therefore, the research and development of the fault prediction technology is of great theoretical and practical value. The fault prediction algorithm usually estimates the state of the system firstly through the monitoring information of the state and the known historical operation data, and then the evolution trend of the system state is predicted. Based on this, the research contents in this paper are divided into two parts. The first part analyzes the influence of the system's non-linearity, the model uncertainty, the multiple measurement and the sampling way of the sensors on the system performance, and studies the state estimation of several kinds of stochastic uncertain dynamic systems. In the second part, when the model of the known system is known, the operation state of the system can be estimated effectively based on the method of the mechanism model, but it is very difficult to set up an accurate mathematical model for the complex industrial system. The data-driven method can utilize the off-line, on-line data and other knowledge of the system to realize the prediction and diagnosis of the fault. However, in addition to the historical data which needs the normal operation of the system, the data-driven fault prediction method also needs the data in the abnormal operation of the system, so that the operation data under the system fault condition often needs extremely high cost, and is even catastrophic. In this paper, the proper framework of two kinds of methods is studied, the existing mechanism knowledge and historical data are fully used, and the state estimation method of dynamic data driving is studied to improve the prediction precision. The specific research work in this paper is summarized as follows: for the time-varying random nonlinear system state estimation problem, the effect of multiplicative noise, parameter uncertainty and multiple measurement data loss on the performance of the filter is comprehensively considered, and the filter with the iteration form is designed under the meaning of the minimum variance. so that the filter not only has the robustness to the uncertainty of the system parameters, but also has non-vulnerability to the change of the filter parameters, The design problem of the filter is studied. At each sampling time, the upper bound of the error covariance of the minimum state estimation error is realized by designing the appropriate filter gain matrix. The filter used has the form of iterative recursion, and can be calculated on-line. At the same time, the estimation error of the system is analyzed, and the mean-square boundedness of the estimation error is proved under certain conditions by using the random analysis theory. Aiming at the problem that the model-based filtering method is over-dependent on the established system model, and the prediction stability and the accuracy of the data driving method are poor, a method for predicting the fusion of the unscented Kalman filter and the correlation vector machine is proposed. the influence of long-term and short-term data on the future trend is comprehensively considered, the filter residual term of the future time obtained by the correlation vector machine is dynamically weighted with the short-term residual term data, and the dynamic adjustment and the prediction update to the filter are realized in the unscented Kalman filter, So as to improve the accuracy of the prediction. Aiming at the problem that the prediction accuracy of the medium/ long time span is low, meanwhile, the adverse effect of the prediction value error of the data driving method with the increase of the prediction step size on the fusion algorithm is improved, and the adaptive weight term is introduced in the fusion method, So that the effect of the prediction value of the data driving algorithm on the filtering update is corrected. In addition, taking into account the change of the measured value of the system, the measurement noise of the system is constantly changing in the prediction process, and the updating of the system model is realized by adopting a dynamic updating algorithm of the system measurement noise, so that the accuracy of the prediction is further improved. Finally, the research work of the full text is summarized, and the next research project is expected.
【學位授予單位】:華中科技大學
【學位級別】:博士
【學位授予年份】:2016
【分類號】:TP277
【相似文獻】
相關期刊論文 前10條
1 謝小莉;電力系統(tǒng)遙測校正和狀態(tài)估計的綜合運用[J];電網技術;1996年05期
2 劉浩;電力系統(tǒng)狀態(tài)估計、檢測及辨識[J];電力系統(tǒng)及其自動化學報;1999年04期
3 張黎;;小議狀態(tài)估計遙測合格率在地區(qū)電網中的調試和提高[J];電子世界;2014年01期
4 張黎;陸煒;;地區(qū)電網狀態(tài)估計調試中典型問題分析[J];電子世界;2014年03期
5 陳子青,石增鈞,林曙光;采用狀態(tài)估計 提高監(jiān)測質量[J];山東電力高等?茖W校學報;2000年02期
6 應春暉;;提高清遠地調狀態(tài)估計軟件運行率的措施[J];廣東電力;2007年08期
7 趙紅嘎,薛禹勝,高翔,潘勇偉,岑宗浩,李碧君;量測量的時延差對狀態(tài)估計的影響及其對策[J];電力系統(tǒng)自動化;2004年21期
8 田江;錢科軍;梁鋒;;分布式狀態(tài)估計技術在智能變電站的應用[J];電網與清潔能源;2013年09期
9 劉浩,顧一中;狀態(tài)估計中不良數(shù)據(jù)的混合檢測辨識程序設計[J];大電機技術;2001年01期
10 吳為麟,侯勇,方鴿飛;基于支路電流的配電網狀態(tài)估計[J];電力系統(tǒng)及其自動化學報;2001年06期
相關會議論文 前10條
1 徐興華;陳萬里;;地調狀態(tài)估計實用化探討[A];華東六省一市電機工程(電力)學會輸配電技術研討會2002年年會山東電機工程學會交流論文集[C];2002年
2 郭金蓮;范曉丹;趙洪山;;分布式狀態(tài)估計算法的研究[A];中國高等學校電力系統(tǒng)及其自動化專業(yè)第二十四屆學術年會論文集(上冊)[C];2008年
3 劉耀年;郝靜;;基于分布式抗差加權最小二乘法的狀態(tài)估計[A];第十一屆全國電工數(shù)學學術年會論文集[C];2007年
4 劉順明;劉耀年;于賀;湯德海;;基于抗差加權最小二乘法的分布式狀態(tài)估計[A];高效 清潔 安全 電力發(fā)展與和諧社會建設——吉林省電機工程學會2008年學術年會論文集[C];2008年
5 何青;歐陽紅林;楊民生;童調生;;基于最優(yōu)定界橢球的自適應集員狀態(tài)估計[A];2004全國測控、計量與儀器儀表學術年會論文集(上冊)[C];2004年
6 郭曉林;曹軍海;賈小平;;模糊狀態(tài)估計在機動目標跟蹤中的應用[A];1997中國控制與決策學術年會論文集[C];1997年
7 林桂華;張艷軍;周蘇荃;;基于量測變換的混合量測狀態(tài)估計算法[A];中國高等學校電力系統(tǒng)及其自動化專業(yè)第二十四屆學術年會論文集(上冊)[C];2008年
8 景渤雯;趙璐;張雨生;;基于PMU的狀態(tài)估計研究現(xiàn)狀及發(fā)展展望[A];中國高等學校電力系統(tǒng)及其自動化專業(yè)第二十四屆學術年會論文集(上冊)[C];2008年
9 彭云輝;繆棟;劉云峰;;SR-UKF在狀態(tài)估計中的應用[A];2006中國控制與決策學術年會論文集[C];2006年
10 王正志;肖齊英;;部分參數(shù)不準確的線性系統(tǒng)H_∞狀態(tài)估計濾波問題[A];1993年控制理論及其應用年會論文集[C];1993年
相關博士學位論文 前10條
1 王吉華;多軸轉向車輛狀態(tài)估計與控制研究[D];南京航空航天大學;2013年
2 Sideig Abd elrhman Ibrahim Dowi;PMU測量單元對電力系統(tǒng)動態(tài)狀態(tài)估計影響研究[D];華北電力大學;2015年
3 隋天舉;網絡化線性系統(tǒng)狀態(tài)估計問題研究[D];浙江大學;2017年
4 鄭秀娟;基于狀態(tài)估計的多方法融合的故障預測算法研究[D];華中科技大學;2016年
5 任江波;電力系統(tǒng)過程狀態(tài)估計研究[D];哈爾濱工業(yè)大學;2007年
6 陳芳;電網狀態(tài)估計及其擴展的理論研究[D];山東大學;2010年
7 暢廣輝;基于混合量測的電力系統(tǒng)分布式狀態(tài)估計研究[D];武漢大學;2009年
8 王永;互聯(lián)電網分布式狀態(tài)估計和混合量測狀態(tài)估計研究[D];哈爾濱工業(yè)大學;2008年
9 白宏;基于PMU量測信息的面向過程狀態(tài)估計研究[D];哈爾濱工業(yè)大學;2008年
10 黃彥全;電力系統(tǒng)狀態(tài)估計若干問題的研究[D];西南交通大學;2005年
相關碩士學位論文 前10條
1 王珊珊;利用支路信息進行電力網絡拓撲辨識[D];鄭州大學;2015年
2 張娜;電流推算法及其與新息圖相結合的狀態(tài)估計研究[D];哈爾濱工業(yè)大學;2015年
3 沈豪棟;一種基于參數(shù)修正的區(qū)域性電網狀態(tài)估計改進方法[D];上海交通大學;2014年
4 胡曉艷;分布式平臺下的配電網狀態(tài)估計研究[D];華北電力大學;2015年
5 賈楠;基于WAMS的電力系統(tǒng)狀態(tài)估計及其應用[D];華北電力大學;2015年
6 白鐸;智能電網狀態(tài)估計及性能分析[D];電子科技大學;2015年
7 安維亮;離散時間復雜網絡的狀態(tài)估計[D];南京郵電大學;2015年
8 沈超;自愈控制下電網狀態(tài)估計的研究[D];南京郵電大學;2015年
9 邳浚哲;不良數(shù)據(jù)檢測辨識及提高狀態(tài)估計合格率的方法研究[D];華北電力大學;2015年
10 張鵬飛;離散時間隨機系統(tǒng)的狀態(tài)估計與最優(yōu)控制器設計[D];青島科技大學;2015年
,本文編號:2498899
本文鏈接:http://sikaile.net/shoufeilunwen/xxkjbs/2498899.html