Ⅱ-Ⅵ族三元合金半導(dǎo)體熱力學(xué)性質(zhì)的第一性原理研究
[Abstract]:ZnO and other II-VI semiconductor materials are widely used in the fields of photoelectric, piezoelectric, pyroelectric, ferroelectric and the like due to its excellent performance. As the phenomenon of ZnO thin film excited near-ultraviolet laser emission at room temperature has been reported in the 1990s, ZnO as a new type of photoelectric information function material has caused a research upsurge. However, it is necessary to solve the two key problems of the energy band engineering (energy gap regulation) and p-type doping of ZnO. The energy band regulation of ZnO is generally realized by the substitution of equivalent ions, for example, the cation part is substituted for Zn to form a ternary alloy of MeZnO (Me = Mg, Be, Cd, etc.) or an anion-substituted O to form a ternary alloy of ZnOX (X = S, Se, Te, etc.). The results show that the equivalent cation part is substituted for Zn-formed MeZnO (Me = Be, Mg, Cd, etc.), and the solid solubility of Me is limited. In theory, there are few reports on the solid solution properties of the II-VI ternary alloy. In this paper, the thermodynamic properties of CdxZn1-xO, BxZn1-xO, MgxZn1-xO, CdO1-xSx and ZnS1-xSe and other II-VI ternary alloy solid solutions are studied by the first principle calculation and the group expansion method. The formation energy and phase diagram of CdxZn1-xO, BxZn1-xO, MgxZn1-xO, CdO1-xSx and ZnS1-xSx are analyzed. The main contents and conclusions are as follows: (1) The formation energy and phase diagram of wurtzite (WZ) and rock salt (RS) CdxZn1-xO ternary alloy are calculated. The formation energy of most of the CdxZn1-xO alloy configurations was found to be greater than zero by the formation of energy, indicating that ZnO and CdO were difficult to combine to form a solid solution at low temperatures. Two metastable phase structures of the WZ-CdxZn1-xO alloy (Cd1/ 3Zn2/ 3O and Cd2/ 3Zn1/ 3O) were further calculated. The lattice constants a and c, the bond length, the O-Zn (Cd)-O bond angle and the electronic structure of the two metastable phases of Cd1/ 3Zn2/ 3O and Cd2/ 3Zn1/ 3O are found, and the lattice constants a and c are gradually increased with the increase of the content of Cd in the WZ-CdxZn1-xO alloy, but the ratio c/ a of the lattice constant is gradually reduced. Similarly, with the increase of Cd doping, the size of the O-Zn (Cd)-O bond and the band gap are gradually reduced. The effective group interaction coefficient of wurtzite and the structure of CdxZn1-xO is calculated and analyzed, and the group of two atoms is found to be dominant in the effective group interaction coefficient, indicating that the two-atom group has the greatest contribution to the formation energy. By calculating the two-phase phase diagram of the WZ-CdxZn1-xO and RS-CdxZn1xO alloys, the solid solubility of Cd in WZ-ZnO at 1600 K was 0.13, but the solid solubility of Zn in the RS-CdO was 0.01. (2) The formation energy and the thermodynamic phase diagram of wurtzite and sphalerite structure (ZB) BexZn1-xO were calculated. The formation energy of most of the BexZn1-xO alloy configurations was found to be greater than zero by the formation of energy, indicating that ZnO and BeO were difficult to combine at low temperature to form a solid solution. The effective group interaction coefficient calculation of WZ-BexZn1-xO and ZB-BexZn1-x shows that, for the WZ-BexZn1-xO, the group of the two atoms and the four atoms take the leading role in the effective group interaction coefficient, indicating that the group of the two atoms and the four atoms has the greatest contribution to the formation energy. For ZB-BexZn1-xO, the two-atom group is dominant in the effective group interaction coefficient, indicating that the two-atom group has the greatest contribution to the formation energy. The phase diagram of wurtzite and sphalerite BexZn1-xO shows that the phase diagram of wurtzite and sphalerite BexZn1xO has a great effect on the phase diagram of wurtzite and sphalerite. The lattice vibration has a great influence on the solid solubility of Be (Zn) in ZnO (BeO). (3) The formation energy and the thermodynamic phase diagram of the MgxZn1-xO alloy of wurtzite and rock salt are calculated. By calculating the formation energy of MgxZn1-xO, it is found that the formation energy of most of the MgxZn1-xO alloy configuration at low temperature can be less than zero, indicating that ZnO and MgO are easy to bond to form a solid solution at low temperature. The effective group interaction coefficients of wurtzite and halite structural MgxZn1-xO were also calculated. For MgxZn1-xO by the effective group interaction coefficient, the group of two atoms is dominant in the effective group interaction coefficient, indicating that the two-atom group has the greatest contribution to the formation of the MgxZn1-xO. The two-phase phase diagram of WZ-MgxZn1-xO and RS-MgxZn1-xO has found that Mg is hard to be dissolved in the wurtzite type ZnO, and the Zn is more easily soluble in the MgO of the rock salt ore structure. (4) The formation energy and the thermodynamic phase diagram of wurtzite and halite structure CdO1-xSx are calculated. By calculating the formation energy of CdO1-xSx, the formation energy of most of the CdO1-xSx alloy configurations is found to be greater than zero, indicating that CdO and CdS are difficult to combine to form a solid solution at low temperatures. The effective group interaction coefficients of wurtzite and halite structures, CdO1-xSx, are also calculated. The two-atom group is dominant in the effective group interaction coefficient, indicating that the two-atom group has the greatest contribution to the formation of the CdO1-xSx. The two-phase phase diagram of WZ-CdO1-xSx and RS-CdO1-xSx was calculated and analyzed. (5) The thermodynamic properties of the formation energy and phase diagram of WZ-ZnS1-xSx and ZB-ZnS1-xSx are studied. By calculating the formation energy of ZnS1-xSx of wurtzite and sphalerite structure, the formation energy of most of the ZnS1-xSx alloy configurations is found to be greater than zero, indicating that ZnS and ZnSe are difficult to combine to form a solid solution at low temperature. The analysis of the effective group interaction coefficient shows that the group of two atoms is dominant in the effective group interaction coefficient, indicating that the two-atom group has the greatest contribution to the formation energy. The x-T phase diagram of ZnS1-xSx alloy is calculated and analyzed. It is found that the solid solubility of Se in ZnS is substantially the same as that of S in ZnSe, whether wurtzite structure or sphalerite structure alloy. For the above-mentioned semiconductor alloy of the five systems, the formation energy calculated by the expansion method of the group and the formation energy calculated by the first principle are basically the same, so that the validity and the feasibility of the formation energy of the alloy are calculated by the method of the group expansion.
【學(xué)位授予單位】:湖北大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2016
【分類號】:TN304
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 江勇;;摻雜ZnO的第一性原理計(jì)算[J];科協(xié)論壇(下半月);2010年11期
2 袁娣;羅華峰;黃多輝;;C摻雜實(shí)現(xiàn)p型AlN的第一性原理計(jì)算[J];宜賓學(xué)院學(xué)報(bào);2010年12期
3 劉慈仁;雷敏生;;ZnO第一性原理計(jì)算中兩種贗勢方法之比較[J];江西科學(xué);2006年06期
4 汝強(qiáng);胡社軍;邱秀麗;;第一性原理計(jì)算銳鈦礦型TiO_2電子結(jié)構(gòu)及力學(xué)性能分析[J];華南師范大學(xué)學(xué)報(bào)(自然科學(xué)版);2009年04期
5 郝軍華;吳志強(qiáng);王錚;金慶華;李寶會;丁大同;;加壓下ZnO結(jié)構(gòu)相變和電子結(jié)構(gòu)的第一性原理計(jì)算[J];計(jì)算物理;2010年05期
6 趙慰;趙永華;劉曉輝;何力新;;第一性原理計(jì)算軟件包在GPU集群上的加速[J];計(jì)算機(jī)科學(xué)與探索;2014年08期
7 賈偉;王進(jìn);韓培德;黨隨虎;遲美;劉旭光;許并社;;AlN(10-10)表面結(jié)構(gòu)的第一性原理計(jì)算[J];材料導(dǎo)報(bào);2007年06期
8 郭連權(quán);劉嘉慧;宋開顏;張金虎;馬賀;武鶴楠;李大業(yè);;晶體Si能帶的密度泛函及第一性原理計(jì)算[J];沈陽工業(yè)大學(xué)學(xué)報(bào);2009年03期
9 呂泉;黃偉其;王曉允;孟祥翔;;Si(111)面上氮原子薄膜的電子態(tài)密度第一性原理計(jì)算及分析[J];物理學(xué)報(bào);2010年11期
10 邵秀琴,朱俊,趙偉;用第一性原理計(jì)算硅單空位缺陷[J];武漢科技學(xué)院學(xué)報(bào);2001年03期
相關(guān)會議論文 前10條
1 吳忠慶;Renata Wentzcovitch;;高溫高壓彈性的第一性原理計(jì)算新方法及應(yīng)用[A];中國地球物理學(xué)會第二十七屆年會論文集[C];2011年
2 趙麗軍;張小超;樊彩梅;賈金田;梁鎮(zhèn)海;韓培德;;納米鈦酸鎳材料結(jié)構(gòu)模擬及第一性原理計(jì)算[A];第十一屆全國計(jì)算(機(jī))化學(xué)學(xué)術(shù)會議論文摘要集[C];2011年
3 羅曉光;李金平;張幸紅;韓杰才;董善亮;;第一性原理計(jì)算氯化鈉型過渡金屬硼化物的彈性性質(zhì)[A];中國力學(xué)學(xué)會學(xué)術(shù)大會'2009論文摘要集[C];2009年
4 陳灝;蔣鋒;周永西;梁云燁;R.Note;H.Mizuseki;Y.Kawazoe;;分子電子學(xué)和第一性原理計(jì)算(英文)[A];量子電荷和自旋輸運(yùn)研討會論文集[C];2005年
5 董錦明;翁紅明;Y.Kawazoe;T.Fukumura;M.Kawasaki;;磁光效應(yīng)和材料磁光性質(zhì)的第一性原理計(jì)算[A];量子電荷和自旋輸運(yùn)研討會論文集[C];2005年
6 秦敬玉;厲瑞艷;楊磊;;基于逆蒙特卡羅和第一性原理計(jì)算聯(lián)合的Fe-B-Si非晶結(jié)構(gòu)分析[A];第三屆散裂中子源多學(xué)科應(yīng)用研討會論文集[C];2006年
7 姚超;吳忠慶;;第一性原理計(jì)算高溫高壓下Magnesite的狀態(tài)方程、彈性、波速和密度[A];2014年中國地球科學(xué)聯(lián)合學(xué)術(shù)年會——專題11:深部高壓結(jié)構(gòu)、過程及地球物理響應(yīng)論文集[C];2014年
8 張喬麗;袁大慶;張煥喬;范平;左翼;鄭永男;K.Masuta;M.Fukuda;M.Mihara;T.Minamisono;A.Kitagawa;朱升云;;P在α-Al_2O_3中電場梯度的第一性原理計(jì)算[A];第十四屆全國核結(jié)構(gòu)大會暨第十次全國核結(jié)構(gòu)專題討論會論文摘要[C];2012年
9 侯士敏;;納電子器件電學(xué)特性的第一性原理計(jì)算[A];2005年納米和表面科學(xué)與技術(shù)全國會議論文摘要集[C];2005年
10 趙憲庚;;院長致辭[A];中國工程物理研究院科技年報(bào)(2012年版)[C];2012年
相關(guān)博士學(xué)位論文 前10條
1 蔣好;鐵基超導(dǎo)體的晶體化學(xué)以及第一性原理計(jì)算并輔助探索新型超導(dǎo)材料[D];浙江大學(xué);2015年
2 朱慧平;半導(dǎo)體中缺陷及電子特性的第一性原理研究[D];南京大學(xué);2015年
3 黃世娟;正電子理論計(jì)算及其在分析材料微結(jié)構(gòu)中的應(yīng)用[D];中國科學(xué)技術(shù)大學(xué);2015年
4 戴足陽;高分辨小分子光譜計(jì)算研究[D];清華大學(xué);2014年
5 胡麟;一些二維材料的第一性原理計(jì)算與設(shè)計(jì)[D];中國科學(xué)技術(shù)大學(xué);2016年
6 張濱;Fe-Cr合金濺射納米晶薄膜腐蝕電化學(xué)行為的XPS及第一性原理計(jì)算的研究[D];大連理工大學(xué);2016年
7 羅明海;Ⅱ-Ⅵ族三元合金半導(dǎo)體熱力學(xué)性質(zhì)的第一性原理研究[D];湖北大學(xué);2016年
8 楊軍;導(dǎo)電性超硬材料的第一性原理計(jì)算研究[D];上海交通大學(xué);2011年
9 何建平;鈦酸鍶鋇結(jié)構(gòu)及其極化特性的第一性原理計(jì)算與實(shí)驗(yàn)研究[D];華中科技大學(xué);2012年
10 馮頁新;二維碳基材料的催化特性和生長:第一性原理計(jì)算研究[D];南開大學(xué);2013年
相關(guān)碩士學(xué)位論文 前10條
1 邱燁;用第一性原理計(jì)算研究M_3AX_2相材料的點(diǎn)缺陷[D];蘭州大學(xué);2015年
2 李婷婷;鈹和氧化鈹電子、彈性性質(zhì)的第一性原理計(jì)算[D];寧夏大學(xué);2015年
3 陳浩;壓力場中鍺光學(xué)性質(zhì)的第一性原理計(jì)算與實(shí)驗(yàn)分析[D];武漢理工大學(xué);2015年
4 李小波;釔穩(wěn)定氧化鋯空位型缺陷的第一性原理計(jì)算[D];湖南師范大學(xué);2015年
5 彭思雯;Mg-Zn系鎂合金第一性原理計(jì)算[D];沈陽工業(yè)大學(xué);2016年
6 崔莉;VN/TiN體系的修正嵌入原子相互作用勢函數(shù)的研究[D];重慶大學(xué);2015年
7 周,
本文編號:2484122
本文鏈接:http://sikaile.net/shoufeilunwen/xxkjbs/2484122.html