經(jīng)驗(yàn)?zāi)B(tài)分解中關(guān)鍵問題的優(yōu)化理論與方法研究
[Abstract]:With the development of the electronic measurement and signal processing technology, the non-stationary and non-linear features of the signal are widely used in the fields of fault diagnosis, system identification and biomedical instruments. The ability to efficiently extract these features generally affects the performance of the overall system. The time-frequency distribution of the signal has gained more and more attention as a non-stationary non-linear feature. The Hilbert-Huang transform (HHT) provides an adaptive and effective means to extract the time-frequency characteristics of the signal. The core of the HHT method is an adaptive signal decomposition algorithm called the empirical mode decomposition (EMD) algorithm. At present, the EMD method lacks the mathematical framework of the system, resulting in a series of key problems affecting the decomposition quality. In this paper, the EMD is deeply researched, and the effective theoretical framework is set up for the problem of frequency resolution, the problem of mode aliasing and the sampling rate, and the optimization and improvement are made. The main research results are as follows:1. In this paper, a method for calculating the mean value of an input signal high-order differential zero-crossing time is proposed. In the process of screening, the method does not generate the mean value of the upper and lower envelope by the interpolation of the extreme point, but the average value is obtained by directly interpolating the characteristic points. In order to explain the rationality of feature selection, two propositions have been proved. First, the average signal obtained by using the signal even-order differential zero-crossing as the characteristic is correlated with the ideal mean signal. Second, the improvement of the differential order can improve the frequency resolution of EMD. The theoretical analysis shows that the high order differential zero crossing is a time scale and can reflect the local oscillation of the linear signal. The experimental results show that the improved algorithm can effectively improve the frequency separation capability of the EMD method to the linear signal, and the performance is in accordance with the theoretical expectation. A non-uniform B-spline nonlinear filter is designed and implemented, and an adaptive filtering and screening algorithm is proposed based on the filter. The following four propositions are proved and used as the basis of the algorithm. First, the envelope is symmetrical or approximately symmetrical, and the local time scale information of the ideal mean signal can be calculated by its envelope time scale. Secondly, when the envelope is asymmetric, the time scale of the inflection point is related to the time scale of the ideal mean signal. Third, the equal-interval B-spline least square fitting (B-spline fitting) has a low-pass filter property, and the cut-off frequency of the filter is determined by the node spacing. And the local cut-off frequency of the four-and non-equal-interval B-spline fitting has a time-varying low-pass filter property, and the local cut-off frequency is determined by the local node interval. Based on the above proposition, a screening algorithm based on time-varying filtering is presented, which has good separation effect on non-stationary signals. In order to solve the problem of mode aliasing, an algorithm for adaptive fitting iteration based on the distribution of the extreme points is proposed. In contrast to the well-known empirical mode decomposition (EEMD), EEMD can ensure the completeness of the time scale of the decomposition results to a certain extent, but the advantage of EMD method for the decomposition of the local time scale is sacrificed, and the time consuming is huge. The results of the comparative analysis show that the iterative algorithm proposed in this paper can not only effectively eliminate the interference of the noise to the extreme point of the signal, but also can well retain the local decomposition of the EMD. Then, a method for calculating the mean time scale based on the global time scale is proposed. Based on the theoretical results of the cut-off frequency characteristic of the B-spline filter in this paper, a three-probe-scale theoretical framework is proposed, which can be used to filter and extract the mean signal. The theoretical analysis shows that the improved method has better convergence. Compared with EEMD, the results show that the method has higher frequency resolution precision, and can better restrain the noise or intermittent interference. This paper presents a method for calculating the mean value of re-sampling at the time of the extreme point. Compared with the EMD method, the method does not depend on the accurate position and the value of the signal extreme point, so that the method is not easy to be affected by the low sampling rate. The simulation results show that the method can obtain higher performance at a low sampling rate close to the Nyquist frequency. The accuracy of this method is higher as compared to an interpolation-based solution. An additional definition of the eigenmode function (IMF) is given at a low sampling rate. The IMF requires the envelope of the signal to be axisymmetric with respect to time. The analysis shows that the condition is only established when the sampling rate is high. In combination with the nature of the HHT time-frequency analysis method, the IMF is defined by the instantaneous bandwidth, so that the IMF can guarantee the performance at a low sampling rate. The experimental results confirm the correctness of the definition.
【學(xué)位授予單位】:西安電子科技大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2016
【分類號(hào)】:TN713;TN911.6
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 王秋生;段丹輝;;經(jīng)驗(yàn)?zāi)B(tài)分解的邊界效應(yīng)處理技術(shù)[J];計(jì)算機(jī)測(cè)量與控制;2006年12期
2 馮志華;朱忠奎;劉剛;伍小燕;;經(jīng)驗(yàn)?zāi)B(tài)分解方法的小波消失現(xiàn)象[J];數(shù)據(jù)采集與處理;2006年04期
3 宋立新;王祁;王玉靜;梁X;;具有間斷事件檢測(cè)和分離的經(jīng)驗(yàn)?zāi)B(tài)分解方法[J];哈爾濱工程大學(xué)學(xué)報(bào);2007年02期
4 劉小峰;秦樹人;柏林;;基于小波包的經(jīng)驗(yàn)?zāi)B(tài)分解法的研究及應(yīng)用[J];中國(guó)機(jī)械工程;2007年10期
5 胡維平;莫家玲;龔英姬;趙方偉;杜明輝;;經(jīng)驗(yàn)?zāi)B(tài)分解中多種邊界處理方法的比較研究[J];電子與信息學(xué)報(bào);2007年06期
6 胡維平;杜明輝;;信號(hào)采樣率對(duì)經(jīng)驗(yàn)?zāi)B(tài)分解的影響研究[J];信號(hào)處理;2007年04期
7 楊智春;譚光輝;;一種基于樣條插值的經(jīng)驗(yàn)?zāi)B(tài)分解改進(jìn)算法[J];西北工業(yè)大學(xué)學(xué)報(bào);2007年05期
8 楊彩紅;張郁山;;基于折線包絡(luò)的經(jīng)驗(yàn)?zāi)B(tài)分解方法[J];國(guó)際地震動(dòng)態(tài);2008年11期
9 張西良;萬(wàn)學(xué)功;李萍萍;張建;徐云峰;;動(dòng)態(tài)稱量經(jīng)驗(yàn)?zāi)B(tài)分解數(shù)據(jù)處理方法[J];江蘇大學(xué)學(xué)報(bào)(自然科學(xué)版);2008年06期
10 李洪;郝豪豪;孫云蓮;;具有獨(dú)立分量的經(jīng)驗(yàn)?zāi)B(tài)分解算法研究[J];哈爾濱工業(yè)大學(xué)學(xué)報(bào);2009年07期
相關(guān)會(huì)議論文 前10條
1 秦毅;秦樹人;毛永芳;;正交經(jīng)驗(yàn)?zāi)B(tài)分解及其快速實(shí)現(xiàn)[A];第九屆全國(guó)振動(dòng)理論及應(yīng)用學(xué)術(shù)會(huì)議論文摘要集[C];2007年
2 秦毅;秦樹人;毛永芳;;正交經(jīng)驗(yàn)?zāi)B(tài)分解及其快速實(shí)現(xiàn)[A];第九屆全國(guó)振動(dòng)理論及應(yīng)用學(xué)術(shù)會(huì)議論文集[C];2007年
3 楊永鋒;;經(jīng)驗(yàn)?zāi)B(tài)分解與非線性分析的協(xié)同研究[A];第四屆全國(guó)動(dòng)力學(xué)與控制青年學(xué)者研討會(huì)論文摘要集[C];2010年
4 侯文文;鄒俊忠;劉未來(lái);;基于經(jīng)驗(yàn)?zāi)B(tài)分解的眼電偽差去除研究[A];上海市化學(xué)化工學(xué)會(huì)2010年度學(xué)術(shù)年會(huì)論文集(自動(dòng)化專題)[C];2010年
5 李關(guān)防;許春雷;惠俊英;;基于經(jīng)驗(yàn)?zāi)B(tài)分解的特征提取算法研究[A];中國(guó)造船工程學(xué)會(huì)電子技術(shù)學(xué)術(shù)委員會(huì)2011年海戰(zhàn)場(chǎng)電子信息技術(shù)學(xué)術(shù)年會(huì)論文集[C];2011年
6 薛志宏;李廣云;周蓉;;一種基于經(jīng)驗(yàn)?zāi)B(tài)分解的信號(hào)降噪方法[A];全國(guó)工程測(cè)量2012技術(shù)研討交流會(huì)論文集[C];2012年
7 張飛漣;劉嚴(yán)萍;;經(jīng)驗(yàn)?zāi)B(tài)分解與神經(jīng)網(wǎng)絡(luò)方法在降水預(yù)測(cè)領(lǐng)域的應(yīng)用研究[A];中國(guó)系統(tǒng)工程學(xué)會(huì)第十八屆學(xué)術(shù)年會(huì)論文集——A01系統(tǒng)工程[C];2014年
8 康春玉;章新華;;一種基于經(jīng)驗(yàn)?zāi)B(tài)分解的信號(hào)降噪方法[A];中國(guó)聲學(xué)學(xué)會(huì)2007年青年學(xué)術(shù)會(huì)議論文集(下)[C];2007年
9 辛鵬;辛雷;蔡國(guó)偉;李曉琦;;一種基于經(jīng)驗(yàn)?zāi)B(tài)分解與支持向量機(jī)的電力系統(tǒng)短期負(fù)荷預(yù)測(cè)新方法[A];第十一屆全國(guó)電工數(shù)學(xué)學(xué)術(shù)年會(huì)論文集[C];2007年
10 郝文峰;駱英;顧建祖;;基于經(jīng)驗(yàn)?zāi)B(tài)分解-支持向量機(jī)的玻璃幕墻開膠損傷預(yù)測(cè)研究[A];中國(guó)力學(xué)學(xué)會(huì)學(xué)術(shù)大會(huì)'2009論文摘要集[C];2009年
相關(guān)博士學(xué)位論文 前10條
1 黎恒;經(jīng)驗(yàn)?zāi)B(tài)分解中關(guān)鍵問題的優(yōu)化理論與方法研究[D];西安電子科技大學(xué);2016年
2 葛光濤;二維經(jīng)驗(yàn)?zāi)B(tài)分解研究及其在圖像處理中的應(yīng)用[D];哈爾濱工程大學(xué);2009年
3 孫暉;經(jīng)驗(yàn)?zāi)B(tài)分解理論與應(yīng)用研究[D];浙江大學(xué);2005年
4 張繼紅;經(jīng)驗(yàn)?zāi)B(tài)分解及徑向基函數(shù)的一些應(yīng)用研究[D];大連理工大學(xué);2012年
5 熊衛(wèi)華;經(jīng)驗(yàn)?zāi)B(tài)分解方法及其在變壓器狀態(tài)監(jiān)測(cè)中的應(yīng)用研究[D];浙江大學(xué);2006年
6 楊賢昭;基于經(jīng)驗(yàn)?zāi)B(tài)分解的故障診斷方法研究[D];武漢科技大學(xué);2012年
7 高靜;經(jīng)驗(yàn)?zāi)B(tài)分解的改進(jìn)方法及應(yīng)用研究[D];北京理工大學(xué);2014年
8 陳志剛;經(jīng)驗(yàn)?zāi)B(tài)分解與Savitzky-Golay方法的自適應(yīng)遙感影像融合[D];華東師范大學(xué);2010年
9 周義;快速二維經(jīng)驗(yàn)?zāi)B(tài)分解和相位追蹤方法及其在導(dǎo)波無(wú)損檢測(cè)中的應(yīng)用[D];上海交通大學(xué);2014年
10 石志曉;時(shí)頻聯(lián)合分析方法在參數(shù)識(shí)別中的應(yīng)用[D];大連理工大學(xué);2005年
相關(guān)碩士學(xué)位論文 前10條
1 楊U唝~;基于經(jīng)驗(yàn)?zāi)B(tài)分解的城市供水水質(zhì)異常事件檢測(cè)方法研究[D];浙江大學(xué);2016年
2 郭學(xué)雯;利用經(jīng)驗(yàn)?zāi)B(tài)分解方法研究新型熱中子探測(cè)器數(shù)據(jù)周期性[D];河北師范大學(xué);2016年
3 楊勤甜;基于經(jīng)驗(yàn)?zāi)B(tài)分解和粗糙集屬性約簡(jiǎn)的超聲缺陷信號(hào)分類識(shí)別研究[D];南昌航空大學(xué);2016年
4 李超;透平機(jī)組故障特征提取技術(shù)研究與系統(tǒng)開發(fā)[D];天津工業(yè)大學(xué);2016年
5 盧丹丹;基于EEMD的CPI與PPI關(guān)系的結(jié)構(gòu)分析及傳導(dǎo)機(jī)制研究[D];暨南大學(xué);2016年
6 鄒志國(guó);基于經(jīng)驗(yàn)?zāi)B(tài)分解的多分量信號(hào)分析方法研究[D];哈爾濱工業(yè)大學(xué);2016年
7 錢榮榮;基于經(jīng)驗(yàn)?zāi)B(tài)分解的動(dòng)態(tài)變形數(shù)據(jù)分析模型研究[D];中國(guó)礦業(yè)大學(xué);2016年
8 黃陽(yáng);基于經(jīng)驗(yàn)?zāi)B(tài)分解的軸承故障診斷系統(tǒng)研究[D];東北石油大學(xué);2016年
9 楊彩紅;基于折線包絡(luò)的經(jīng)驗(yàn)?zāi)B(tài)分解方法及其應(yīng)用[D];天津大學(xué);2007年
10 付曉波;經(jīng)驗(yàn)?zāi)B(tài)分解法理論研究與應(yīng)用[D];太原理工大學(xué);2013年
,本文編號(hào):2445188
本文鏈接:http://sikaile.net/shoufeilunwen/xxkjbs/2445188.html