基于干擾平臺(tái)旋轉(zhuǎn)的反向交叉眼干擾研究
[Abstract]:The single pulse radar can obtain the angle information of the target by only one pulse signal, and is widely applied to the modern precision tracking radar, in particular, the single pulse angle tracking technology system can be used for accurately and accurately measuring the direction of the target in the end-guidance phase of the missile. The single-pulse radar has strong anti-interference ability to the traditional jamming technology, and the cross-eye interference is one of the methods which can effectively interfere with the single-pulse radar. Cross-eye interference is an angle-jamming method for artificially reconstructing a flicker phenomenon, which is commonly used in the self-protection of a platform such as a ship and an aircraft, and can induce the single-pulse tracking radar to deviate from the real target and point to the direction of the false target. The phase of the cross-eye interference reaching the radar cross-eye can not be strictly inverted, and the interference effect is seriously affected. The inverted cross-eye is proposed based on the Van Arta array, and the phase between the signals can be made as free from the influence of the transmission path as much as possible. Although the mathematical model of the reverse cross-eye based on the extension analysis method has been established, the value range of the phase offset and the amplitude gain is expanded. but the research on the reverse cross-eye interference scheme is not perfect, the existing analysis is to set the rotation angle of the interference platform to a fixed value, and the situation that the interference platform can rotate, shake or be detected by the radar in different directions is not considered, In some case, that interference effect of the reverse cross-eye is influence. In this paper, the influence of the interfering platform echo on the cross-eye interference is studied on the basis of the distance-wave gate-induced interference, and only the modulated signals of the cross-eye interference reach the tracking radar. Setting the rotation angle of the interference platform as a variable, and proposing a cross-eye solution capable of performing angle interference under the condition, and simultaneously introducing the multi-element linear array and the multi-loop structure into the reverse cross-eye solution. In particular, the research background and achievements of this paper mainly include the following parts: the first part mainly studies the basic theory of cross-eye interference. First of all, a common method of angle measurement is introduced, with emphasis on the discussion of amplitude and difference single pulse and phase and difference single pulse. Secondly, the angle interference for single pulse radar is analyzed, and the coherent interference and non-coherent interference are emphatically introduced. Thirdly, the classical theoretical analysis method, which has been applied to the flicker interference and can continue to be applied to cross-eye interference, is described, which mainly includes the linear quasi-legal and the wave-front analysis method. Finally, the interference of the distance wave gate of the pulse radar is simply introduced. In the second part, an orthogonal single-loop rotary reverse cross-eye scheme is proposed, and the concept of the stability factor is introduced as a new evaluation criterion to measure the ability to generate stable angular interference. On the premise of the rotation angle of the interference platform, a single-loop rotary reverse-cross-eye scheme is proposed. In this paper, the traditional two-point source reverse cross-eye and the single-loop rotary reverse-cross-eye scheme are derived mathematically, and the closed-solution equation about the angular deviation is obtained. The orthogonal single-loop rotary cross-eye scheme with the best stability factor is obtained by analyzing the traditional two-point source reverse cross-eye and the single-loop rotary cross-eye scheme with the stability factor as the standard. At the same time, the numerical experiments, analysis and comparison of the typical parameters of the missile for the ship or the aircraft are used to further prove the superiority of the orthogonal single-loop rotating reverse cross-eye solution. The third part mainly studies the interference tolerance of the orthogonal single-loop rotating reverse cross-eye, and uses the specific boundary value of the angle parameter to determine the range of the value of the phase offset and the amplitude gain. On the premise of the rotation angle of the interference platform, the classical method of the tolerance analysis that has been applied to the traditional two-point source backward cross-eye is introduced, and the tolerance analysis based on the extension analysis method is more close to the actual situation. By using the specific boundary value of the angle parameter as the standard, the interference tolerance analysis is carried out on the traditional two-point source reverse cross-eye and the orthogonal single-loop rotary reverse cross-eye, respectively, and the closed solution equation for the specific boundary value of the angle parameter is derived. The traditional two-point source reverse cross-eye and the orthogonal single-loop rotating reverse cross-eye are compared, and the two schemes are distinguished from the mathematical essence. Finally, the advantage of the orthogonal single-loop rotary cross-eye scheme is proved, and the value range of the phase offset and the amplitude gain under the typical parameters is calculated. The fourth part mainly studies the improvement of the reverse cross-eye based on the multi-point source and the multi-loop. The multi-point source and the multi-loop structure are introduced into the reverse cross-eye scheme for the problem that the orthogonal single-loop rotating reverse cross-eye is limited in the practical application. On the premise of the rotation angle of the interference platform, two common analysis methods of the linear multi-point source reverse cross-eye scheme are introduced, and the result of the analysis based on the extension analysis method is more close to the actual situation. At the same time, the closed solution equation about the angle deviation is derived. The method of extension analysis is used to carry out the theoretical analysis of the scheme of the part, and the closed solution equation with respect to the angle deviation is obtained. Compared with the traditional scheme, the two schemes proposed in this part have obvious advantages in theory and practice.
【學(xué)位授予單位】:西安電子科技大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2016
【分類號(hào)】:TN958.4
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 孫富君,陶建鋒,孫宏偉;單脈沖雷達(dá)的角度跟蹤干擾研究[J];現(xiàn)代雷達(dá);2004年01期
2 謝俊好,熊衛(wèi)明;傳統(tǒng)單脈沖方法的數(shù)學(xué)原理及工程實(shí)現(xiàn)[J];系統(tǒng)工程與電子技術(shù);2004年04期
3 鞠智芹,董勝波,鐘全華;比幅和差式單脈沖雷達(dá)微波和差器建模[J];計(jì)算機(jī)仿真;2004年09期
4 鞠智芹,董勝波,鐘全華;單脈沖雷達(dá)合并通道定向接收機(jī)建模[J];計(jì)算機(jī)仿真;2004年09期
5 朱玉鵬,李朝偉,黎湘,莊釗文;單脈沖雷達(dá)多目標(biāo)分辨技術(shù)研究[J];電光與控制;2004年04期
6 王鑒,張艷花;單脈沖雷達(dá)跟蹤噪聲源跟蹤誤差原因分析[J];電子對(duì)抗技術(shù);2005年05期
7 李朝偉;周希元;陳衛(wèi)東;周一宇;;單脈沖雷達(dá)主波束內(nèi)多目標(biāo)的檢測(cè)方法[J];電子學(xué)報(bào);2006年06期
8 李朝偉;黎湘;王宏強(qiáng);莊釗文;;單脈沖雷達(dá)在多源環(huán)境中對(duì)目標(biāo)的定位[J];火力與指揮控制;2006年09期
9 徐才宏;沙崢瑜;;干擾單脈沖雷達(dá)有效性分析[J];艦船電子對(duì)抗;2006年04期
10 胡體玲;李興國(guó);;雙平面振幅和差式單脈沖雷達(dá)的性能分析[J];現(xiàn)代雷達(dá);2006年08期
相關(guān)會(huì)議論文 前7條
1 何瑞;于長(zhǎng)軍;位寅生;;基于中頻注入法的單脈沖雷達(dá)幅相不一致校正[A];2005通信理論與技術(shù)新進(jìn)展——第十屆全國(guó)青年通信學(xué)術(shù)會(huì)議論文集[C];2005年
2 陳洋;章錦文;姚宏達(dá);;振幅和差式單脈沖雷達(dá)建模及測(cè)角性能仿真[A];第13屆中國(guó)系統(tǒng)仿真技術(shù)及其應(yīng)用學(xué)術(shù)年會(huì)論文集[C];2011年
3 陳亮;盛衛(wèi)星;馬曉峰;;自適應(yīng)數(shù)字波束形成天線的單脈沖角度跟蹤[A];2009年全國(guó)天線年會(huì)論文集(下)[C];2009年
4 劉景高;李可青;;單脈沖雷達(dá)和、差支路幅、相特性實(shí)時(shí)自動(dòng)校準(zhǔn)系統(tǒng)的研制[A];1991年全國(guó)微波會(huì)議論文集(卷Ⅱ)[C];1991年
5 劉建勛;劉驍;徐強(qiáng);孫厚軍;;單脈沖雷達(dá)四通道下變頻器相位一致性的測(cè)量[A];2009安捷倫科技節(jié)論文集[C];2009年
6 張建強(qiáng);戴國(guó)榮;;S波段雙極化單脈沖雷達(dá)天線的設(shè)計(jì)[A];2011年全國(guó)微波毫米波會(huì)議論文集(上冊(cè))[C];2011年
7 陳定;牛寶君;何炳發(fā);;和差分布的優(yōu)化設(shè)計(jì)[A];2010年全國(guó)電磁兼容會(huì)議論文集[C];2010年
相關(guān)博士學(xué)位論文 前3條
1 劉松楊;基于干擾平臺(tái)旋轉(zhuǎn)的反向交叉眼干擾研究[D];西安電子科技大學(xué);2016年
2 胡體玲;3mm波段高分辨力單脈沖雷達(dá)技術(shù)研究[D];南京理工大學(xué);2007年
3 李強(qiáng);單脈沖雷達(dá)目標(biāo)三維成像與識(shí)別研究[D];西安電子科技大學(xué);2007年
相關(guān)碩士學(xué)位論文 前10條
1 賈一凡;復(fù)單脈沖比的統(tǒng)計(jì)分析及仿真研究[D];哈爾濱工業(yè)大學(xué);2008年
2 李皓;基于單脈沖雷達(dá)的多目標(biāo)檢測(cè)方法與仿真[D];北京理工大學(xué);2016年
3 毛祺;相位和差單脈沖雷達(dá)仿真研究[D];電子科技大學(xué);2008年
4 齊凱;單脈沖雷達(dá)多目標(biāo)檢測(cè)技術(shù)的研究[D];哈爾濱工業(yè)大學(xué);2006年
5 徐喜安;單脈沖雷達(dá)系統(tǒng)的建模與仿真研究[D];電子科技大學(xué);2006年
6 蔣培文;單脈沖雷達(dá)目標(biāo)跟蹤與抗干擾技術(shù)研究[D];南京理工大學(xué);2009年
7 姚劍;單脈沖雷達(dá)的多目標(biāo)檢測(cè)與分辨技術(shù)[D];哈爾濱工業(yè)大學(xué);2009年
8 顧春穎;改善單脈沖雷達(dá)多普勒動(dòng)態(tài)跟蹤精度的方法研究[D];哈爾濱工業(yè)大學(xué);2007年
9 陳曦;單脈沖和差測(cè)角雷達(dá)的高速實(shí)時(shí)信號(hào)處理系統(tǒng)的設(shè)計(jì)與實(shí)現(xiàn)[D];南京理工大學(xué);2013年
10 王玉濤;單脈沖測(cè)角技術(shù)及工程實(shí)現(xiàn)[D];西安電子科技大學(xué);2007年
,本文編號(hào):2435686
本文鏈接:http://sikaile.net/shoufeilunwen/xxkjbs/2435686.html